Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Requirements:
The candidate should have a first class or upper second class honours degree, or a master’s degree (or equivalent qualification), in Mathematics/Computer Science/Engineering. Evidence of good spoken and written English is essential. The candidate should have an IELTS score of 6.5 or above, if the first language is not English. This position is open to all qualified candidates irrespective of nationality.
Degree:
The student will be awarded a PhD degree from the University of Liverpool (UK) upon successful completion of the program.
Project Description:
This project mainly focuses on traffic state prediction and investigation of dynamic traffic control strategy for Connected and Automated Vehicles (CAVs). In contrast to the traditional transport systems with only human-driving vehicles, the control policy in each CAV can be exactly predefined so that the states such as vehicle position, speed, acceleration and headways can be predicted by a given control policy. To fully utilize the reduction of uncertainty, this project will propose a hybrid traffic state prediction model, which incorporates a traffic model with reduced uncertainty into data-driven models such as RNN (Recurrent Neural Network) or DL (Deep Learning) to achieve a better prediction accuracy. In presence of CAVs, traffic control policy may become dynamic and cooperative because of rapid change of environment and V2X technologies. The dynamic control policy relies on a large amount of real-time data collected from loop detectors, GPS, radar, camera and V2X, and then causes a change of traffic state in future time instants. That means, predicted traffic state and control policy should have mutual influence, which can be utilized to improve the prediction accuracy and control policy. The project will propose a joint cooperative and dynamic control policy, which uses reinforcement learning technique to learn the optimal dynamic control policy from the current and predicted traffic state, and jointly update the predicted traffic state via the current control policy. The proposed control strategy should consider cooperation between different vehicles and traffic signal to maximize the network capacity and reduce the overall travel time at the network equilibrium point.
For more information about doctoral scholarship and PhD programme at Xi’an Jiaotong Liverpool University (XJTLU), please visit
https://www.xjtlu.edu.cn/en/admissions/global/entry-requirements/
https://www.xjtlu.edu.cn/en/admissions/global/fees-and-scholarship
How to Apply:
Interested applicants are advised to email [Email Address Removed] (XJTLU principal supervisor’s email address) the following documents for initial review and assessment (please put the project title in the subject line).
- CV
- Two formal reference letters
- Personal statement outlining your interest in the position
- Certificates of English language qualifications (IELTS or equivalent)
- Full academic transcripts in both Chinese and English (for international students, only the English version is required)
- Verified certificates of education qualifications in both Chinese and English (for international students, only the English version is required)
- PDF copy of Master Degree dissertation (or an equivalent writing sample) and examiners reports available
Funding Notes

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Suzhou, China
Check out our other PhDs in China
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Traffic Flow Prediction in Presence of Autonomous Vehicles with Consideration of Dynamic Traffic Assignment Model
Xi’an Jiaotong-Liverpool University
Vehicular Traffic Flow Modelling, Prediction and Control
University of Sheffield
6G Wireless Communications for Connected and Autonomous Vehicles in Challenging Environments
University of York