Imperial College London Featured PhD Programmes
Coventry University Featured PhD Programmes
University of Reading Featured PhD Programmes

Tumour evolution in super-resolution: Developing new Artificial Intelligence based methods to analyse 4D imaging data of tumour communities

  • Full or part time
    Prof C Bakal
  • Application Deadline
    Friday, May 01, 2020
  • Funded PhD Project (Students Worldwide)
    Funded PhD Project (Students Worldwide)

Project Description

For details on how to apply using our online recruitment portal please see http://icr.ac.uk/phds.

Developing new cancer therapies requires improved understanding of heterogeneity in cell behaviour. This requires determining single-cell responses, rather than the average responses of cell populations that fail to account for outlier cells that can be responsible for drug resistance. There is also increasing interest in more complex 3D cancer models, such as patient-derived organoids (PDO) that better recapitulate the complexity of the in vivo context compared to conventional high-throughput assays of homogenous 2D cell cultures. However, increasing the physiological complexity of cancer models makes them harder to image using optical microscopy techniques, and this makes screening many samples or conditions in high-throughput screening more challenging.

This PhD project is part of a Cancer Research UK funded Accelerator award between Imperial College London, the Francis Crick Institute, the Institute of Cancer Research (ICR), the University of Edinburgh and the Institute for Research in Biomedicine Barcelona. The project will develop, apply and utilise a new state-of-the-art automated light-sheet multiwell-plate oblique plane microscope (OPM) at the ICR to provide 3D imaging of 3D cell cultures and PDOs in 96 and 384-well formats. The PhD student will become expert in the use of the instrument, develop new image analysis pipelines and interpret these results in the context of the biology. The system will be used to provide quantitative single cell-resolved readouts and responses in fixed and live cell cancer models across a widerange of conditions and provide functionality beyond the commercial state-of-the-art, e.g. providing faster 3D imaging of cell morphology, dynamics and migration in multiwell plate arrays.

The project will enable studies of which cells within a heterogeneous cancer population are effectively killed by chemotherapy and which of the persisting cells are responsible for disease recurrence. It will also be used to explore the role of the tumour microenvironment for quiescent chemotherapy-resistant tumour cell sub-populations. The ideal candidate would have a keen interest in the development and application of new tools and methodologies to study cancer biology and for drug discovery, and would welcome the multidisciplinary nature of the project. In particular they should have a strong physical- or computer-sciences background. A high level of computer literacy, including experience of computer programming is essential.

Funding Notes

Students receive an annual stipend, currently £21,000 per annum, as well as having tuition fees (both UK/EU and overseas) and project costs paid for the four-year duration. We are open to applications from any eligible candidates and are committed to attracting and developing the best minds in the world.

For details on how to apply using our online recruitment portal please see View Website. Please note we only accept applications via the online application portal.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.