Looking to list your PhD opportunities? Log in here.
About the Project
The ability to disperse nanoparticles on the surface of materials has revolutionised surface science and catalysis, speeding up a wide range of chemical reactions of great practical importance. Dispersing nanoparticles within the bulk of materials instead is synthetically much more challenging and therefore less explored but could prove to be just as revolutionary for speeding up transport properties throughout the bulk. Indeed, materials exhibiting high electron, ion or heat transport across the bulk underpin a wide range of energy conversion technologies including fuel cells, electrolysis cell, photovoltaics, thermoelectrics etc.
Recently, a new method for the preparation of such systems has been discovered. The method, referred to as redox exsolution, enables extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, inside an oxide lattice (endo-particles) as well as on its surface (exo-particles).The endo-particles and the surrounding lattice become mutually strained and seamlessly connected, enabling enhanced oxygen exchange and opening intriguing new possibility for strain engineering of transport properties of materials.
This PhD project will explore the design, characterisation and application of exsolved materials for power-to-X energy conversion devices where X can be fuels, chemicals, heat or power, all essential for transitioning to a clean, sustainable energy economy.
The project is thus highly multidisciplinary in scope, employing different structural and chemical characterisation methods, manufacturing and application testing procedures, and will provide the candidate with the opportunity to interact with world leading expert collaborators and institutions in the respective fields.
In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.
Information about the host department can be found by visiting:
http://www.strath.ac.uk/engineering/chemicalprocessengineering
http://www.strath.ac.uk/courses/research/chemicalprocessengineering/
Funding Notes
Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science discipline, and be highly motivated to undertake multidisciplinary research.
References
2. K. Kousi, D. Neagu, L. Bekris, E. I. Papaioannou and I. S. Metcalfe, Angew. Chem. Int. Ed., 2020, 59, 2510–2519.
3. Wikipedia, 2020.
4. P. D. Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo and E. H. Sargent, Science, 2019, 364.
Email Now
Why not add a message here
The information you submit to University of Strathclyde will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Development of Nanostructured Materials for Applications in Energy Conversion, Environmental Catalysis and Water Treatment
University of St Andrews
Designing catalyst materials for clean energy conversion reactions by molecular modelling
University of Adelaide
Materials for thermoelectric energy recovery
University of Reading