University of Edinburgh Featured PhD Programmes
University of Leeds Featured PhD Programmes
University of Glasgow Featured PhD Programmes

Understanding eye-hand coordination in object interception – a computational modelling approach


School of Sport, Exercise and Rehabilitation Sciences

Birmingham United Kingdom Applied Mathematics Biomedical Engineering Data Analysis Medical Physics Neuroscience Other Other Other Other Physiology

About the Project

This PhD project with Dr Yeo will focus on understanding how we perform interception. Interceptive movements--such as catching a gently thrown ball, quickly grabbing a tilting cup to avoid spilling or even just handshaking someone--feel like trivial everyday tasks for us that seemingly look too simple to study. However, our ability to generate these movements with a high degree of accuracy and flexibility far exceeds any man-made robots, and the brain’s underlying mechanisms remain largely unknown. Furthermore, failure to do so due to neuromotor diseases (such as Parkinson’s or stroke) significantly impairs the quality of life, which all together makes the study of interception an excellent research topic in movement neuroscience. Interceptive movements generally require a close collaboration between two procedures: visual information gathering (eye) and motor control (hand), and therefore scrutinizing the patterns of eye and hand movements during interception can lead us to uncover the hidden strategies of how the brain coordinates these procedures to maintain accuracy and flexibility of the interception. Previous studies, including those from our group, suggested that the eye movement exhibits two distinctive strategies during interception, called catch-up saccades and smooth pursuit, and those strategies are closely synchronised with hand movement strategies consisting of submovements in reactive-proactive phases (check video: https://www.youtube.com/watch?v=xTGfy5fRe-c).

The goal of the project is to further examine the details of this eye-hand coordination pattern in a novel experimental environment. To capture and control the eye and hand movement patterns in a three-dimensional space-time, the study will use cutting-edge robotic and virtual reality technologies, which are newly introduced in the field of movement science; The experiment will be conducted in an immersive virtual environment, equipped with a head-mounted display with a built-in eye tracker (Oculus Rift + SMI) and force controlled robotic arms (Phantom and vBOT robotic system), by which the participant’s eye and hand movements can be effectively monitored and manipulated during dynamic interceptive movements. Based on our observation, we will seek to build a computational model that will advance our quantitative understanding of the brain’s interception mechanism.

The expected outcome of the study will be highly applicable to many related areas, including sport and coaching science, neuro-motor rehabilitation, and humanoid robotics. We are looking for motivated people to participate in the development of experimental environment, data collection and computational modelling / analysis. The ideal candidate will have a background in computer science, robotics, psychology, mathematics, physics, and have some experience (or at least a keen interest) in one or more of the following fields: human movement experiment, motion capture, eye-tracking, computer animation, virtual reality, software development.

To find out more about studying for a PhD at the University of Birmingham, including full details of the research undertaken in the School, the funding opportunities available for your subject, and guidance on making your application, you can order a copy of our Doctoral Research Prospectus, at: http://www.birmingham.ac.uk/drp

Eligibility requirements: An Undergraduate Honours degree with a minimum classification of a 2.1 science BSc or a MSc or equivalent and a life science, clinical or engineering background. English Language qualification for international students.

Funding Notes

Yeo, S. H., Lesmana, M., Neog, D. R., & Pai, D. K. (2012). Eyecatch: Simulating visuomotor coordination for object interception. ACM Transactions on Graphics (TOG), 31(4), 1-10.

Fooken, J., Yeo, S. H., Pai, D. K., & Spering, M. (2016). Eye movement accuracy determines natural interception strategies. Journal of vision, 16(14), 1-1.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Birmingham will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2021
All rights reserved.