or
Looking to list your PhD opportunities? Log in here.
Packaging DNA into nucleosomes helps protect the long fragile genomes of eukaryotic species. However, in doing so it becomes an ever-present physical barrier to the machinery required for its replication, repair and transcription. Wrapped up tightly in its histone overcoat, how do cells gain access to the underlying DNA? Universally, in species as diverse as brewers’ yeast, fruit flies, worms and man, the answer is to post-translationally modify (PTM) the histones to either help open it up, or compress the chromatin still further. Lysine-acetylation (Lys-Ac) is one of the most common histone PTMs and occurs on the unstructured and Lys-rich N-terminal tails of the core histones (H2A, H2B, H3 and H4). Given the density of Lys residues within histone tails, neutralization of their positive charge by acetylation reduces the overall affinity of histones for the negatively charged DNA backbone, opening chromatin and making it more transcriptionally permissive. Histone acetylation is highly dynamic with its level regulated by the opposing action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). There are 18 HDAC enzymes in mammalian cells that can be sub-divided according to the presence of Zn2+-dependent (Class I, II and IV) or NAD+-dependent (Class III/Sirtuins) catalytic domains. As master regulators of chromatin accessibility, HDACs have been implicated in almost all nuclear functions, including DNA repair, DNA replication, chromosome segregation and gene expression. There is a compelling motivation to understand the fundamental biology of HDAC enzymes and to exploit this knowledge to improve their use as drug targets.
Because of their role in cell cycle progression, HDAC inhibitors (HDACi), such as SAHA, have been utilised as anticancer agents. HDACi are also established treatments for epilepsy and bi-polar disorder, and have shown promise as therapeutics for neurodegenerative disorders, such as Huntingdon’s disease. However, the use of pan-HDACi in patients is associated with multiple debilitating side-effects. Even specific HDACi, such as Entinostat (MS-275) which target predominantly HDAC1/2, results in many of the same problems, presumably because it still targets all four HDAC1/2 containing complexes non-specifically. Given the positive therapeutic value of HDAC inhibition in numerous disease states, and the detrimental side-effects of generic HDAC inhibition, there is a strong imperative to design novel HDAC inhibitors (HDACi) with improved specificity and alternative modes of action. Or to phrase the question in another way, can we drug individual HDAC1/2 complexes? And if so, what are the consequences?
1) The role of HDAC1/2 complexes in development
HDAC1/2 complexes are essential for embryonic development. We have therefore used gene editing methods, such as CRISPR, to generate embryonic stem (ES) cell lines in which we can specifically ‘switch off’ HDAC1 and HDAC2, or components of specific complexes e.g. LSD1 and Sin3A, to examine their critical roles in development using a number of ES cell differentiation systems. Currently, we are performing transcriptomic experiments in ‘gastruloids’, an organoid system formed from aggregating ES cells that closely mimics the gastrulating embryo.
2) Targeting HDAC1/2 for degradation in cancer cells
In collaboration with Dr James Hodgkinson (Dept. of Chemistry) at the University of Leicester, have been developing novel PROTACs directed towards HDAC1/2. Proteolysis Targeting Chimaeras (PROTAC) are hetero-bifunctional molecules which incorporate a known binding moiety to the protein of interest (POI, e.g. an inhibitor), coupled to a ligand for an E3 ubiquitin ligase complex. Direct recruitment of the E3 ligase to the POI via the PROTAC, targets it for ubiquitination and ultimately degradation. We recently published the first PROTACs to target HDAC1/2 specifically in cancer cells and are currently optimising additional molecules that target specific complexes.
Biochemistry, Cancer, CRISPR, Gene regulation, Molecular Biology, Epigenetics and Chromatin
Entry requirements
To apply
Carefully read the application advice on our website below and submit your PhD application.
https://le.ac.uk/study/research-degrees/research-subjects/molecular-and-cell-biology
The university will respond to you directly. You will have a FindAPhD account to view your sent enquiries and receive email alerts with new PhD opportunities and guidance to help you choose the right programme.
Log in to save time sending your enquiry and view previously sent enquiries
The information you submit to University of Leicester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Leicester, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
Understanding Hormone Regulation in Skin Cancer Development and Progression
University of York
Development and validation of a radiosensitivity gene expression signature in prostate cancer
The University of Manchester
Structure and function of enzyme complexes involved in post-transcriptional gene regulation
University of Nottingham