University of Birmingham Featured PhD Programmes
University of Kent Featured PhD Programmes
University of Kent Featured PhD Programmes
Catalysis Hub Featured PhD Programmes
Brunel University London Featured PhD Programmes

Understanding temperature adaptation in tropical Andean butterflies

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Dr N Nadeau
    Prof J Hill
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

We are seeking an enthusiastic student with interests in ecology, evolution and genetics to work on a project investigating thermal adaptation in tropical Andean butterflies. Understanding organisms’ adaptation to their thermal environment is important for predicting responses to climate change. Tropical insects makeup around half of all species on Earth, and yet very little is known about their thermal ecology. Butterflies are one of the best-studied insect groups concerning thermal adaptation, but relatively little is known about the responses of tropical species to climate change.

The Heliconius butterflies have been extensively studied, and there is good information about the distributions of species in this genus, but very little is known about what determines species ranges (e.g. temperature versus rainfall), or how ranges have shifted. Many of the species in the genus are found in and around the Andes, and it seems likely that thermal adaptation plays a role in delimiting niches in this area, and in driving distributions to shift uphill, but this has not previously been investigated. Excellent genomic resources are available for Heliconius, which have been used to investigate genes underlying adaptation and speciation. This provides the opportunity to investigate thermal adaptation in this group at multiple levels, from genes to populations, species and communities, to investigate and predict responses to climate change.

The project can be tailored to the interests of the student but could include a combination of field work, physiological and genetic laboratory work, the computational analysis including analysis of genomic data and species distribution modelling, and working with historical collections and records. Key questions that could be addressed include: understanding how temperature affects survival, growth and fecundity of Heliconius species found at different elevations across the Andes; if and how these parameters relate to species distributions and range limits; if and how species ranges are changing or could change in response to habitat and climate change; the genetic basis of thermal adaptation and whether genetic changes have occurred or are they likely to occur in response to climate change.

This PhD will be linked to a newly funded NERC grant exploring variation in thermal adaptation across altitudinal gradients in Heliconius and the genetic basis of this. This collaborative project is led by Dr Nadeau in Sheffield, with Prof. Jiggins in Cambridge, Dr Saastamoinen in Helsinki and Dr Bacquet at the Amazonian Regional University, IKIAM, in Ecuador. The PhD student will expand this work to understand the implications for species distributions and climate change, with guidance from co-supervisor Prof. Hill in York.

Further Information:

Funding Notes

Fully funded studentships cover: (i) a stipend at the UKRI rate (at least £14,777 per annum for 2019-2020), (ii) research costs, and (iii) tuition fees. Studentship(s) are available to UK and EU students who meet the UK residency requirements.
This PhD project is part of the NERC funded Doctoral Training Partnership “ACCE” (Adapting to the Challenges of a Changing Environment ACCE is a partnership between the Universities of Sheffield, Liverpool, York, CEH, and NHM.
Shortlisted applicants will be invited for an interview to take place at the University of Sheffield the w/c 11th February 2019.


Nadeau NJ et al. 2014 Population genomics of parallel hybrid zones in the mimetic butterflies, H. Melpomene and H. erato. Genome Res. 24, 1316–1333. DOI:10.1101/gr.169292.113
Scriven SA, Beale CM, Benedick S, Hill JK. 2017 Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotropica 49, 206–216. DOI:10.1111/btp.12397
Rosser N, Phillimore AB, Huertas B, Willmott KR, Mallet J. 2012 Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol. J. Linn. Soc. 105, 479–497. DOI:10.1111/j.1095-8312.2011.01814.x

FindAPhD. Copyright 2005-2019
All rights reserved.