University of Edinburgh Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
Imperial College London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
University of Leeds Featured PhD Programmes

Understanding the impact of hypoxia dynamics on therapeutic response in breast cancer

Project Description



Hypoxia, resulting from an imbalance between oxygen delivery and consumption, is a common feature of most solid tumours associated clinically with: cellular heterogeneity and genomic instability; chemo- and radio-resistance; and poor prognosis, particularly in cancers of hormone sensitive tissues such as the breast. Overlooked by many of these studies is the fact that hypoxia is a fundamentally dynamic process; exposure to fluctuating oxygen gradients has recently been proposed to further facilitate both metastatic spread and resistance to therapy.

This project forms part of a multidisciplinary team including; Sarah Bohndiek, who will use high resolution photoacoustic imaging to map tumour blood oxygenation and Helen Bryne who will use the maps generated in the Bohndiek lab to generate in silico models of vascular architecture and function. Together this will provide mechanistic insight into the causes of transient blood flow changes and make predictions of associated oxygen partial pressure (pO2) in tumour tissue to inform in vitro experiments.

The Hammond lab have specialist hypoxia chambers that provide constant levels of hypoxia or dynamic hypoxia on the timescale of both hours and minutes. This will allow us to mimic the physiologically relevant conditions determined though this collaboration in order to ask important questions relevant to the treatment of breast cancer. For example, how the response to standard-of-care agents is impacted by dynamic hypoxia; how the DNA damage response, which the Hammond lab have described extensively in response to constant hypoxia, is altered in dynamic conditions and finally, the identification of potential synthetic lethal interactions in dynamic hypoxia.

Overall, this multi-disciplinary and collaborative project will provide us with fundamental insight into the magnitudes, timescales and spatial distributions of hypoxia dynamics in breast cancer. Most importantly, it will also allow us to test the interaction of novel therapies with the hypoxic solid tumour microenvironment.

The student will develop expertise in the field of hypoxia and particularly the in vitro systems/models available. A key part of this studentship will be the exposure to a multi-disciplinary team with the opportunity to work side-by-side with experts in both the mathematical and imaging labs. It is envisioned that the student will spend some time in the Bohndiek lab in Cambridge to gain first-hand experience.

Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, D’Angiolella V, Myers WK, Domene C, Flashman E, Hammond EM. Mol Cell. 2017 Apr 20;66(2):206-220

Preclinical testing of an ATR inhibitor demonstrates improved response to standard therapies for esophageal cancer. Leszczynska KB, Dobrynin G, Leslie RE, Ient J, Boumelha AJ, Senra JM, Hawkins MA, Maughan T, Mukherjee S, Hammond EM. Radiother Oncol. 2016 Nov;121(2):232-238

Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT. Leszczynska KB, Foskolou IP, Abraham AG, Anbalagan S, Tellier C, Haider S, Span PN, O’Neill EE, Buffa FM, Hammond EM. J Clin Invest. 2015 Jun;125(6):2385-98.

Funding Notes



Whilst you must register three referees, the department may start the assessment of your application if two of the three references are submitted by the course deadline and your application is otherwise complete. Please note that you may still be required to ensure your third referee supplies a reference for consideration.

Academic references are strongly encouraged, though you may use up to one professional reference provided that it is relevant to the course.

How good is research at University of Oxford in Clinical Medicine?

FTE Category A staff submitted: 238.51

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.