Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Pancreatic cancer, or pancreatic ductal adenocarcinoma (PDAC), kills over 430,000 people every year. It is one of the deadliest epithelial malignancies, and both incidence and mortality are rising. In the UK alone, there are around 10,500 new cases every year, and less than 8% of those patients will survive their disease for five years. Thus, improvements in our understanding of the disease are vital to identify novel targets for therapy.
PDAC is notable for its extensive stroma of fibroblasts, immune cells, and extracellular matrix proteins such as collagen and fibronectin. Evidence shows that this stroma play an important role in tumour progression, able to influence tumour growth, invasion, immunosuppression, and, importantly, therapeutic resistance. The advent of mutant Kras inhibitors has the potential to be game changing in this disease, particularly now that inhibitors are in development for the most mutated form in pancreatic cancer. However, results in other tumour types suggest that resistance can develop quickly. In pancreatic cancer, the stroma can drive drug resistance, and we have evidence already that drugs targeting RAS signalling can cause microenvironmental changes associated with acquired resistance. For example, we find that inhibition of signalling downstream of Kras can have efficacy in tumour-bearing mice. However, most tumours relapse quickly, display elevated fibrosis, and intriguingly, a re-wiring of signalling in the microenvironment. The aim of this project is to identify the best strategies to overcome resistance.
It is essential to investigate these aspects of tumour biology in vivo, in spontaneous tumours with a physiological microenvironment. Using genetically engineered mouse models of PDAC that fully recapitulate human tumours in terms of genetic alterations and microenvironment, the student will investigate the microenvironment changes associated with therapeutic resistance and interrogate the signalling pathways involved. State-of-the-art molecular & digital pathology technologies will be used to spatially link molecular changes to therapeutic responses, and thus increase our understanding of the relationships between signalling pathways, tumour cells and the tumour microenvironment following therapeutic intervention. The student will also use a variety of ex vivo techniques including immunohistochemistry and multiplex immunofluorescence, tissue culture and co-culture systems, genetic manipulation, flow cytometry, as well as routine molecular biology techniques to identify the key targets of these signals and thus, identify new therapeutic options.
About us
The CRUK Beatson Institute where the lab is based is a world leading cancer research institute, situated in the vibrant city of Glasgow in Scotland and hosting approximately 60 graduate research scientists at any one time. It has an excellent reputation for fundamental cancer research, including world-class metabolism studies and renowned in vivo modelling of tumour growth and metastasis.
To apply, and for further details on the application process, please click ‘Institute website’. Please do not email your CV.
References
Hallin et al. (2022) Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nature Medicine. 28, 32171-2182.
Waters AM & Der CJ (2018) KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harb Perspect Med. 8:a031435.
Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA & Gress TM (2019) Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 68:159-171.
Coffelt SB & Morton JP. (2022) LOXL2 in pancreatic tumourigenesis: the complexity of tumour-stromal crosstalk exemplified. Gut. 2022-327430.
Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, Eberlein C, Candido JB, Clarke M, Nixon C, Connelly J, Jamieson N, Carter CR, Balkwill F, Chang DK, Evans TRJ, Strathdee D, Biankin AV, Nibbs RJB, Barry ST, Sansom OJ & Morton JP. (2016) CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell 29:832-845.
Funding Notes

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Mechanisms of resistance to anticancer drugs that define heterogeneity of cancer cell populations
Ariel University
Cancer Biology: The role of Wnt signaling in glioblastoma therapeutic resistance
University of Leeds
Understanding the mechanisms of metabolic reprogramming in cancer: towards novel therapies
Brunel University London