University of Leeds Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Cardiff University Featured PhD Programmes

Unravelling the mysteries of air quality above polar snow and ice using the isotopic fingerprints of reactive nitrogen (FREYUBAS20ARIES)


Project Description

SCIENTIFIC BACKGROUND

Climate and environment in polar and high-altitude regions are particularly sensitive to anthropogenic perturbation. Understanding the natural processes in the background atmosphere is essential to assess the human contribution to environmental change. Examples are the nitrogen oxides NO and NO2, which alter concentrations of ozone (O3), a pollutant and greenhouse gas, and the hydroxyl radical (OH), which is responsible for the removal of many other atmospheric pollutants (e.g. CO, CH4). Nitrous acid gas (HONO) is a particularly reactive nitrogen species, related to NO and NO2, which has been observed previously at surprisingly high levels in air above snow, suggesting a large snowpack source may be present. The aim of this project is to quantify HONO emissions with an optical technique (LOPAP instrument) and to use isotopic techniques (15N/14N, 18O/16O and 17O/16O ratios) to trace reactive nitrogen formation and loss processes in polar regions.


RESEARCH METHODOLOGY

You will use a combination of state-of-the art methods and instruments to measure the concentration, fluxes and isotopic composition of reactive nitrogen species (HONO, NOx, HNO3, NO3– separated using filters and annular denuders) above snow and ice in lab experiments at BAS Cambridge and the UEA Roland von Glasow Air-Sea-Ice Chamber, and potentially in the field at a station operated by BAS in coastal Antarctica. You will interpret your observations with a numerical air-snow model to quantitatively understand the composition of the atmosphere above snow, to study the relationship between HONO and NOx as well as their conversion to HNO3 and NO3–, with the ultimate goal to improve global chemistry-climate models.


TRAINING

You will be part of dynamic research teams at BAS and UEA, which are working on a wide range of environmental topics in the polar regions. You will receive full training in the relevant instruments and sampling techniques, modelling and fieldwork. You will attend an atmospheric sciences summer school and receive support to publish results in peer-reviewed journals and at international conferences.


QUALIFICATIONS

Experience in experimental work and good numerical skills (e.g. knowledge of Matlab, Python or equivalent) is desirable.


More information on the supervisor for this project: https://www.bas.ac.uk/profile/maey/
Type of programme: PhD
Start date: October 2020
Mode of study: Full-time or part-time
Studentship length: 3.5 years
Eligibility requirements: First degree in Chemistry, Physics or related Earth/Environmental Sciences

Funding Notes

This project has been shortlisted for funding by the ARIES NERC Doctoral Training Partnership, and will involve attendance at mandatory training events throughout the PhD.

Shortlisted applicants will be interviewed on 18/19 February 2020.

Successful candidates who meet UKRI’s eligibility criteria will be awarded a NERC studentship. UK and EU nationals who have been resident in the UK for 3 years are eligible for a full award.

Excellent applicants from quantitative disciplines with limited experience in environmental sciences may be considered for an additional 3-month stipend to take advanced-level courses in the subject area.

For further information, please visit View Website

References

Legrand, M., Preunkert, S., Frey, M., Bartels-Rausch, T., Kukui, A., King, M. D., Savarino, J., Kerbrat, M., and Jourdain, B.: Large mixing ratios of atmospheric nitrous acid (HONO) at Concordia (East Antarctic Plateau) in summer: a strong source from surface snow?, Atmos. Chem. Phys., 14, 9963–9976, doi:10.5194/acp-14-9963-2014, URL http://www.atmos-chem-phys.net/14/9963/2014/, 2014.

Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T., and Sigman, D. M.: Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O, Anal. Chem., 79, 599-607, 10.1021/ac061022s, 2007.

Frey, M. M., Roscoe, H. K., Kukui, A., Savarino, J., France, J. L., King, M. D., Legrand, M., and Preunkert, S.: Atmospheric nitrogen oxides (NO and NO2) at Dome C, East Antarctica, during the OPALE campaign, Atmos. Chem. Phys., 15, 7859–7875, doi:10.5194/acp-15-7859-2015, 2015.

Chai, J., and Hastings, M. G.: Collection method for isotopic analysis of gaseous nitrous acid, Anal. Chem., 90, 830-838, 10.1021/acs.analchem.7b03561, 2018.

Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, doi:10.5194/acp-7-4329-2007, 2007.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.