Chat online with top universities at our virtual study fair - Tuesday 7th July (12pm - 5pm BST)

University of East Anglia Featured PhD Programmes
Sheffield Hallam University Featured PhD Programmes
University of Reading Featured PhD Programmes

Unsteady aerodynamics of micro drones for Offshore Wind Farm Monitoring

School of Engineering

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
Dr IM Viola , Dr F Giorgio-Serchi No more applications being accepted Funded PhD Project (European/UK Students Only)

About the Project

4-year PhD with Integrated Studies.

Aim of the project. The aim of the project is to investigate, through bio-inspired fundamental research, a mechanism to exploit wind gusts to keep small flyers afloat. Recent work led by Viola and published in Nature (, reveals that the dandelion exploits a highly porous wing to form a fluid vortex, which has never been observed before, and that slows down its descent velocity. It also revealed that the dandelion exploits wind gusts to gain altitude and slow down its descent. Computational fluid dynamics simulations will be undertaken to study the underlying principles of this uplifting mechanism and to underpin the design of a dandelion-inspired drone: the dandidrone.

Industrial context. Offshore wind energy is set to rise nearly tenfold in the next 10 years, and up to 1 TW in 2050. This is equivalent to a wind farm of the size of the North Sea. To monitor such a wide offshore area remotely, it will be necessary to develop aerial sensors with a step increase in resiliency and endurance. Nature offers ingenious solutions to this challenge. In fact, plant seeds maximise their endurance and dispersal to ensure the proliferation of the plant. This project will address this industry-driven challenge of maximising endurance of small flyers by undertaking fundamental research inspired by the most successful of the plant dispersal mechanisms: that one of the dandelion seed.

Fluid Mechanics Context. Similar mechanisms, where a passive body scavenges energy from flow fluctuations for locomotion, have already been observed. For example, some bodies with ad-hoc shapes such as pyramids can passively hover by exploiting oscillating flow. With an akin mechanism, swimmers scavenge flow fluctuations generated by other swimmers or obstacles to swim against the current. Beal et al. (, for example, showed a dead fish swimming upstream in the wake of a semi cylinder. Understanding these mechanisms that exploit the environmental flow fluctuations to gain altitude or to swim upstream are paramount to enable new engineering solutions for zero- and low-energy transport

The student will join the Centre for Doctoral Training (CDT) in Wind and Marine Energy Systems and Structures (WAMESS). Please see for more information on the programme of study including the list of taught courses.

Eligibility and How to Apply
Please refer to this School of Engineering page:

Funding Notes

Stipend and Tuition Fees (at the UK/EU fee rate only) are available.

Overseas students may apply, but only if external funding has already been secured to cover the difference between the UK/EU fee rate and the Overseas fee rate.

FindAPhD. Copyright 2005-2020
All rights reserved.