Looking to list your PhD opportunities? Log in here.
About the Project
Imagine an architect, tasked with converting an old stadium into a building with a different function, without demolishing it. While she might contemplate turning the stadium into a housing project, shopping mall, or office space, she will not consider turning it into an airport, because the existing architecture imposes certain constraints: namely, the walls that surround it prevent airplanes from landing.
Evolution operates in much the same way: the molecular structures that already exist inside a cell impose constraints that make it more difficult to evolve certain forms compared to others. This Ph.D will use the tools and techniques of synthetic biology in order to understand how the existing molecular mechanisms determine evolution.
Understanding this relationship is crucial for predicting evolution. The ability to predict evolution is particularly critical when it comes to understanding and predicting the evolution of antibiotic resistance – one of the most important examples of how evolution affects human lives today, already causing over 25,000 deaths per year in the EU alone, in addition to extending hospital stays and increasing health care costs. In order to tackle this problem, we need to develop predictive approaches that will help us not only extend the usefulness of existing antibiotics, but also inform the development of longer-lasting novel drugs.
The aim of this Ph.D is to improve our ability to predict multi-drug resistance evolution by understanding how the existing molecular mechanisms determine evolution. This Ph.D project will involve constructing synthetic regulatory networks and experimentally probing them by introducing mutations into promoters and transcription factors that control the expression of multi-drug resistance pumps (AcrAB-TolC). This will allow us to understand how biophysical mechanisms determine the effects of mutations in transcription factors and promoters, and hence how they drive resistance evolution.
The Ph.D student will work alongside a computational /theoretical postdoc.
Entry Requirements
Candidates are expected to hold (or be about to obtain) a minimum upper second class honours degree (or equivalent) in a related area/subject. Candidates with previous laboratory experience, particularly in cell culture and molecular biology, are particularly encouraged to apply.
How To Apply
For information on how to apply for this project, please visit the Faculty of Biology, Medicine and Health Doctoral Academy website (https://www.bmh.manchester.ac.uk/study/research/apply/). Informal enquiries may be made directly to the primary supervisor. On the online application form select PhD Genetics
For international students, we also offer a unique 4 year PhD programme that gives you the opportunity to undertake an accredited Teaching Certificate whilst carrying out an independent research project across a range of biological, medical and health sciences.
Equality, Diversity and Inclusion
Equality, diversity and inclusion is fundamental to the success of The University of Manchester, and is at the heart of all of our activities. The full Equality, diversity and inclusion statement can be found on the website https://www.bmh.manchester.ac.uk/study/research/apply/equality-diversity-inclusion/”
For international students we also offer a unique 4 year PhD programme that gives you the opportunity to undertake an accredited Teaching Certificate whilst carrying out an independent research project across a range of biological, medical and health sciences. For more information please visit http://www.internationalphd.manchester.ac.uk
Funding Notes
As an equal opportunities institution we welcome applicants from all sections of the community regardless of gender, ethnicity, disability, sexual orientation and transgender status. All appointments are made on merit.
References
De Visser, J. A. G. M. & Krug, J. Empirical Fitness Landscapes and the Predictability of Evolution. Nature Reviews Genetics 15, 480–490 (2014).
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular Mechanisms of Antibiotic Resistance. Nature Reviews Microbiology 13, 42–51 (2014).
Lagator, M., Paixao R., Barton N.H., Bollback J.P., Guet C.C. On the Mechanistic Nature of Epistasis in a Canonical cis-Regulatory Element. eLife 6, e25192 (2017).
Email Now
Why not add a message here
The information you submit to The University of Manchester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Manchester, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Enhancing the Biotechnological Potential of a Bioplastic Producer Cupriavidus Necator H16 Using a Combination of Adaptive Laboratory Evolution (ALE) and Synthetic Biology Approaches
University of Sheffield
Combining Synthetic Biology and Modelling to Understand and Predict Evolution
The University of Manchester