Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
*The difference between international and UK fee rate will be covered by the University of Edinburgh for successful candidates*
Supervisors: Tilo Kunath, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh ([Email Address Removed]) and Qingfeng Yan, Institute of Genetics and Regenerative Biology, Zhejiang University ([Email Address Removed])
An MSc degree is not a requirement.
Project details
Mitochondrial dysfunction is a significant driver of diverse human diseases, including Parkinson’s disease (PD) and cardiovascular disease (CVD). The advent of induced pluripotent stem cell (iPSC) technology has provided exceptional opportunities to study diseases in a dish. Protocols to produce dopaminergic neurons and cardiomyocytes for disease modeling from human iPSCs are now very efficient and well-established in the Kunath and Yan labs, respectively (Chen et al, 2019; Zhang et al, 2016).
This project consists of three parts. 1. Generation of an allelic series of CRISPR-engineered iPSC lines with fluorescent reporters of oxidative stress (roGFP) within mitochondria (Cannon & Remington, 2006). 2. Live-imaging of roGFP-iPSC-derived dopaminergic neurons and cardiomyocytes under conditions of low and high oxidative stress. 3. Investigation of PD and CVD disease models with roGFP-iPSC lines.
1. A healthy control human iPSC will be targeted at a known locus (eg. AAVS1) with a defined collection of targeting vectors that encompass selected next-generation redox-sensitive GFP (roGFP) constructs fused with mitochondrial targeting sequences (MTS). Upon live-imaging characterization, the most optimal reporter cell lines will be used for the next stages of the project.
2. Differentiation of roGFP-iPSCs into dopaminergic neurons (Kunath lab) and cardiomyocytes (Yan lab) will be performed and cells will undergo various treatments to induce generic oxidative stress, and imaged for signs of mitochondrial dysfunction and oxidative stress.
3. roGFP-iPSC-derived dopaminergic neurons and cardiomyocytes with be induced to acquired disease-like phenotypes by treatment with MPP+ for dopaminergic neurons and hypoxia for cardiomyocytes. The kinetics and dynamics of mitochondrial oxidative stress will be dissected under these disease model conditions.
PI Websites:
Tilo Kunath https://www.ed.ac.uk/regenerative-medicine/research/tilo-kunath
Qingfeng Yan https://person.zju.edu.cn/en/qfyan
The School of Biological Sciences is committed to Equality & Diversity
The “Institution Website” button will take you to our online Application Checklist. From here you can formally apply online via EUCLID.
Funding Notes
References
Chen Y, Dolt KS, Kriek M, Baker T, Downey P, Drummond NJ, Canham MA, Natalwala A, Rosser S, Kunath T. (2019) Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur J Neurosci. 49(4):510-524. doi: 10.1111/ejn.14286.
Xuan Zhang, Shishi Li, Wei Yang, Huaye Pan, Dajiang Qin, Xufen Zhu, Qingfeng Yan (2016) Mitochondrial disease-specific induced pluripotent stem cell models: Generation and Characterization, Methods in Molecular Biology, 1353: 323–342. DOI 10.1007/7651_2014_195.
How good is research at University of Edinburgh in Biological Sciences?
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universities
Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Edinburgh, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Computer Vision with Deep Learning for Human Data Modelling
Durham University
Linking biodiversity with human health to inform the One Health Approach: statistical modeling of comprehensive open-access environmental and health datasets on the globe scale
Xi’an Jiaotong-Liverpool University
4 Year PhD with Integrated MSc in Neuroscience: ApoE-ε4 induced blood-brain barrier dysfunction in Alzheimer’s disease
University of Sheffield