In the middle of applying to universities? | SHARE YOUR EXPERIENCE In the middle of applying to universities? | SHARE YOUR EXPERIENCE

Wearable Computing & AI for Activity Recognition


   School of Engineering and Informatics

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr D Roggen  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

The research of the Wearable Technologies Lab is focused on wearable computing and AI for human activity recognition. Applicants interested in research at the interface of machine learning, artificial intelligence, wearable computing and wearable sensing, with a focus placed on recognising, and eventually understanding human gestures, activities and behaviour, are encouraged to apply.  

== Objectives == 

AI and machine learning techniques can be used to infer human activities by interpreting the data originating from a variety of multimodal wearable, mobile and ambient sensors. 

This can be used to provide contextual assistance with applications in human-robot interaction, healthcare, industrial assistance, sports training, skill assessment, entertainment, and others. 

Within your PhD, you will seek methods to make it easier to train systems to recognise a wider range of human activities. You will research advanced machine learning and AI techniques to recognise a growing set of activities from multimodal sensors, and reduce the effort associated with acquiring annotated training data. 

Depending on your interests, different approaches can be followed: deep transfer learning to exploit the growing availability of multimedia datasets (e.g. Google AVA dataset, Youtube data, the Sussex-Huawei dataset), interactive machine learning, crowd-sourcing, adaptive machine learning, and others. 

Your PhD can be oriented towards methods achieving high performance for offline usage, or methods suitable for real-time activity recognition running on embedded platorms. Demonstrators arising from this project are welcome. 

== Qualifications ==  

Eligible candidates will have a 2:1 degree or equivalent in a related field. The ideal candidates will have a master's degree in computer science, computer engineering, physics, mathematics, electrical engineering, or equivalent, with prior experience desired in machine learning and ideally in embedded and wearable systems. The candidate will have excellent technical skills, including programming in some of Python, C/C++ or Matlab and experience with deep learning frameworks and Linux. 

The ideal candidates will have a passion to contribute to the development of novel wearables which can improve quality of life. They will a strong interest in research at the crossroads of signal processing, machine learning, embedded systems, sensor technologies and their applications.  

Applicants should be committed to pursue leading research and publish results in top venues. Additionally, we expect mastery of written and spoken English, self-motivation, an inquiring mind, be able to work independently and in an interdisciplinary environment. 

== About the Lab == 

The Wearable Technologies Lab, led by Dr. Daniel Roggen, has been established in 2014. Since then, it has acquired funding from Google, Huawei (twice), EPSRC, Unilever, the Austrian FFG, the European Union, and others.  

The focus of our lab is to advance AI techniques to automatically recognise and understand human activities or daily routines from wearable and mobile sensors. We have developed several wearable sensing platforms and software frameworks for this, including deep learning and ASIC-friendly approaches. 

The lab has created numerous dataset for activity recognition research, the most recent is a massive transportation dataset - the Sussex-Huawei Locomotion dataset (www.shl-dataset.org) - which has been used in prominent machine learning challenges at Ubicomp 2018, 2019, 2020 and 2021. 

Some of our applications are in the fields of sports performance, industrial assistance, mobility monitoring, crowd behaviour analytics and healthcare. 

The members of the lab have an international outlook, with a mix of computer scientists, computer engineers, and electronic engineers.  

The lab has state of the art computing and electronics facilities with a wide range of technologies at hand: GPU computing platforms, augmented reality glasses, smartwatches, a vast array of datasets and ad-hoc software tools to support research, numerous novel sensor technologies and sensing platforms, etc. 

==How to apply==

Apply online for a full time PhD in Engineering using our step by step guide (http://www.sussex.ac.uk/study/phd/apply). Here you will also find details of our entry requirements. 

 Please clearly state on your application form that you are applying for the Wearable Computing & AI for Activity Recognition Scholarship under the supervision of Professor Daniel Roggen ([Email Address Removed]).  

== Start Date==

March 2022, September 2022, or other mutually agreeable start date.


Funding Notes

You will receive a tax-free stipend at a standard rate of £15,609 per year for 3.5 years. In addition, your fees will be waived for 3.5 years at the home / overseas rate. You will also receive an RTSG of £2,000 over the course of the studentship.
The stipend is available to: UK / EU / Overseas
The fee waiver is available to: UK / EU / Overseas
PhD saved successfully
View saved PhDs