Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Development of the hematopoietic/ immune system in the embryo: obtaining a mechanistic insight into the birth of hematopoietic stem and progenitor cells in embryonic development


   Radcliffe Department of Medicine

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof M DeBruijn  No more applications being accepted  Self-Funded PhD Students Only

About the Project

Development of the hematopoietic/ immune system in the embryo

Our aim is to obtain a mechanistic insight into the birth of hematopoietic stem and progenitor cells in embryonic development and determine the contribution of these cells to the emerging hematopoietic and immune systems of the embryo.

Hematopoietic stem cells (HSCs) are responsible for the lifelong production of blood and adaptive immune cells. They are generated de novo early in development from a specialized subset of endothelial cells, the so-called hemogenic endothelium (HE). Prior to HSC generation, the embryo produces hematopoietic progenitor cells that support its growth and development and contribute to tissue-resident innate immune cells. Taking advantage of unique Runx1 enhancer-reporter mouse models generated in our laboratory we set out to dissect the cellular and molecular events that underlie the birth of blood stem and progenitor cells. Using one of these models we previously analysed HE at the single cell level, showing its dynamic nature during mouse development and rewriting the time line for HE specification to the hematopoietic lineage (Swiers et al., Nature Communications 2013). More recently, we have performed extensive expression (RNA-seq) and chromatin (ATAC-seq) profiling of Runx1 enhancer-reporter-marked cells throughout early mouse development to construct gene interacting networks and identify new players critical to the formation of HE and hematopoietic stem and progenitor cell lineages that will be tested experimentally. Another line of work in the laboratory aims to elucidate the cis-regulatory organization of the transcription factor Runx1 in the developing hematopoietic and immune cell lineages, and identify the trans-acting factors and signals that converge on the enhancers to control cell type specific expression. Runx1 cis-regulation is highly complex and dynamic, and is regulated through cis-regulatory elements distal to its promoters (Nottingham et al., Blood 2007, Bee et al., Blood 2009, Schutte et al., eLife 2016). Our ongoing studies in this area apply state-of-the art chromatin analysis and molecular technologies. Finally, we have begun to trace the early mesodermal origin(s) of hematopoietic stem cells and specific progenitors in the mammalian embryo to map their trajectories through the embryo and the signals they receive that affect their fate decisions. Altogether, insights obtained from these studies will contribute to a better understanding of the cell types that build and maintain the adult hematopoietic and immune systems. In addition, the signals and gene interacting networks underlying the formation of these cells will inform the directed differentiation of ESC/iPSC into clinically relevant hematopoietic and/or immune cells.

Our laboratory is now looking for enthusiastic and motivated students to join our team. The successful candidate will be part of the Developmental Hematopoiesis group in the MRC Molecular Haematology Unit of the MRC Weatherall Institute of Molecular Medicine (WIMM) at the Radcliffe Department of Medicine. In pursuing her/his project, the candidate will have ample opportunities for collaboration with other groups in the WIMM and the Radcliffe Department of Medicine working on gene regulation and epigenetics, gene editing, blood stem and progenitor cell biology, and computational biology. There is an active student association in the WIMM, which organises several events throughout the year.

For further information on potential project areas, please contact:

Prof Marella de Bruijn

[Email Address Removed]

The successful candidate will be expected to have significant input in developing and leading their project in one of our areas of research, with the advice and guidance of the supervisor.

As well as the specific training detailed above, students will have access to high-quality training in scientific and generic skills, as well as access to a wide-range of seminars and training opportunities through the many research institutes and centres based in Oxford.

The Department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to build a happy and rewarding environment where all staff and students are supported to achieve their full potential.

Funding Notes

Our main deadline for applications for funded places has now passed. Supervisors may still be able to consider applications from students who have alternative means of funding (for example, charitable funding, clinical fellows or applicants with funding from a foreign government or equivalent). Prospective applicants are strongly advised to contact their prospective supervisor in advance of making an application.

Please note that any applications received after the main funding deadline will not be assessed until all applications that were received by the deadline have been processed. This may affect supervisor availability.

References

Nottingham et al., Blood 2007


Bee et al., Blood 2009


Swiers et al., Nature Communications 2013


Schutte et al., eLife 2016


Azzoni et al., EMBO Reports 2018




How good is research at University of Oxford in Clinical Medicine?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities