• Northumbria University Featured PhD Programmes
  • Queen’s University Belfast Featured PhD Programmes
  • University of Manchester Featured PhD Programmes
  • University of Stirling Featured PhD Programmes
  • University of Warwick Featured PhD Programmes
  • University of Macau Featured PhD Programmes
  • University of Birmingham Featured PhD Programmes
King’s College London Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
ESPCI Paris Tech Featured PhD Programmes
Coventry University Featured PhD Programmes
University of Strathclyde Featured PhD Programmes

Environmental stress and the epigenome

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr A Bretman
    Dr S M Sait
    Dr E.J.. Duncan
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

The need to understand the genetic underpinning of species’ responses to environmental stress has been brought into sharp focus because of the potential consequences of future climate change and the ability, or not, of animals to cope with that change. Animals face challenges of environmental stress from many sources, such as temperature, nutrition, toxins, disease and social interactions. These stresses can be variable and unpredictable, acute or long lasting, and impact many aspects of individual fitness (reproductive output, rate of ageing and ultimately lifespan e.g. Leech et al 2017).

To combat these stresses individuals can be plastic in their behaviour or physiology. The mechanisms that underlie these processes are not well understood, but recently there has been rise in interest in the role played by the epigenome (chemical markers on DNA that do not change the sequence but determining how accessible genes are for expression). Information about the environment an animal experiences can affect gene expression and the epigenome (Duncan et al., 2014). This enables the epigenome to be environmentally sensitive, for example to maternal nutrition (Dolinoy et al., 2007), heat stress (Seong et al., 2011), amount of parental care (Roth et al., 2009), stressful confinement (Rodgers et al., 2015), and environmental toxins such as cigarette smoke (Qiu et al., 2015). Despite the fact that changes to the epigenome can be fast, occurring within hours (e.g. Kangaspeska et al., 2008), these changes states can have long lasting effects on the individual and even transgenerational effects as epigenetic information can be passed from parent to offspring (e.g. Roth et al., 2009). These processes may therefore play a critical role in determining which species survive this era of huge global environment change.

As yet we have limited understanding of what effect stresses have on the epigenome and hence subsequent fitness of the animal and whether different stresses cause similar responses. To explore this we will use insect model systems (Drosophila fruit flies, Indian meal moths, bees) and interfere with various epigenetic marks chemically and genetically (using transgenic fruit flies). We will test whether there are commonalities in responses across different stressors (hot and cold temperatures, starvation, desiccation, crowding) and how these stressors interact. By using various insect species we can test the generality of responses. To examine how stresses alter epigenetic states, we will employ cutting edge sequencing technology (ChIP-seq). In an increasingly changing world, this will give us exciting new insights into how animals cope with environmental stress and how the epigenome interacts with fitness.



Funding Notes

Applicants should have or be expecting 2.1 or above at undergraduate level, in a relevant subject. A Masters is desirable.

A candidate will be entered into the competition for funding through the Leeds NERC DTP.
Details on how to apply can be found here http://www.nercdtp.leeds.ac.uk/how-to-apply/

References

Dolinoy et al 2007 PNAS 104, 13056
Duncan et al 2014 J. Experimental Zool B 322, 208
Kangaspeska et al 2008 Nature 452, 112
Leech et al 2017 J. Insect Phys
Qiu et al 2015 Epigenetics 10, 1064
Rodgers et al 2015 PNAS 112, 13699
Roth et al 2009 Biol. Psychiatry 65, 760
Seong et al 2011 Cell 145, 1049

How good is research at University of Leeds in Biological Sciences?

FTE Category A staff submitted: 60.90

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Cookie Policy    X