• University of Manchester Featured PhD Programmes
  • FindA University Ltd Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Birmingham Featured PhD Programmes
  • Ross University School of Veterinary Medicine Featured PhD Programmes
  • Lancaster University Featured PhD Programmes
  • Coventry University Featured PhD Programmes
Ludwig-Maximilians-Universität Munich Featured PhD Programmes
Imperial College London Featured PhD Programmes
EPSRC Featured PhD Programmes
Coventry University Featured PhD Programmes
University of Exeter Featured PhD Programmes

Mechanisms of weed seed persistence and development of novel weed management tools


Project Description

Weeds owe their success, at least in part, to seed dormancy and longevity as early-life history adaptation mechanisms. The overall aim of this project is to gain a deeper understanding of the fundamental mechanisms of weed seed adaptation to changing ambient temperatures. Weeds and heat stress are major threats to agriculture and food security; about 10% of crop production is currently lost to weeds. Without herbicides these losses would be about 50%. The objectives and deliverables of this project are achieved in a collaboration between the Seed Biology and Engineering Group of Prof G Leubner at Royal Holloway University of London (RHUL) and Syngenta’s Weed Control Research led by Dr David Stock at Jealott’s Hill International Research Centre (JHIRC, Bracknell, UK). We will conduct seed dormancy, germination, and longevity modelling of responses with the focus on noxious weeds from the Amaranthaceae family. This will be at different temperatures and upon chemical manipulation to deliver the quantitative physiological framework for the subsequent comparative hormone and transcriptome profiling to elucidate the underpinning molecular mechanisms. From the comparative transcriptomics we will select differentially expressed genes and derive candidates for conserved and seed-specific target mechanisms. Using identified suitable targets genes we will develop antisense oligionucleotides and identify chemicals to specifically develop novel agri-technologies for weed seed and seedling control. This project and collaboration with Syngenta builds on our strengths to enhance the bioeconomy by providing innovative agri-technologies and by providing training and developing skills relevant to the agricultural industry.

The sustainable intensification of food production ("Reaping the benefits", The Royal Society policy doc. 11/2009) necessary to feed the world’s growing population will only be achievable if crop harvest losses due to heat stress and due to competition with weeds can be minimised. New weed control tools are urgently required and especially in the UK where crop production levels and regulations have caused a shrinkage in our ’crop protection toolbox’ ("Healthy Harvest" initiative, UK National Farmers Union). The problem of effective weed control is most severe in annual field crop systems and with annual weeds which emerge at the same time as the crop seedlings.

Prof Gerhard Leubner, Chair of Plant Biochemistry at Royal Holloway University (RHUL), leads the Group for Seed Biology and Engineering (www.seedbiology.eu) which is targeting plant seeds as the delivery systems of scientific advance and novel agri-technologies to agriculture. His large team with experts from molecular biology to seed technology and biomaterial engineering has a long-standing track record in innovative and interdisciplinary approaches to crop and weed seed research. They have established a broad collaboration and networking base with leading seed/molecular scientists, ecologists, material scientists and industrial partners. Together with the excellent working environment/equipment of the lab, this will provide significant synergy to the project, will offer plenty of opportunities for training and skill development, as well as exposure to industry of the student. This includes through the associated BBSRC LINK project "Chemical manipulation and mechanisms of weed seed persistence, dormancy release and germination" in collaboration with Syngenta. Dr David Stock is a Syngenta Fellow and Head of Weed Control Research Biology at Syngenta’s Jealott’s Hill International Research Centre (ca. ½ hour drive from RHUL). Her is responsible for Weed Control Biology Research, from New Active Ingredients through to Development and Life Cycle Management. He is experienced in co-supervising students and in providing placements at Syngenta’s JHIRC.

CASE Collaborative/Industrial Placement: The three-month CASE (Collaborative Awards in Science and Engineering) placement will be at Syngenta’s Weed Control Biology Research at JHIRC. The placement will provide experience and training in applied research and methods relevant to the project’s topic. The timing of this is flexible and will be either one or two blocks placed strategically in the initial and the middle phase of the PhD project.

Priority Area: Agriculture and Food Security, Collaborating with the UK’s Industry

Funding Notes

4-year fully funded BBSRC DTP CASE PhD studentship

References

The Seed Biology Place – www.seedbiology.eu
• Lenser T, Graeber K, Cevik ÖS, Adigüzel N, Dönmez AA, Grosche C, Kettermann M, Mayland-Quellhorst S, Mérai Z, Mohammadin S, Nguyen T-P, Rümpler F, Schulze C, Sperber K, Steinbrecher T, Wiegand N, Strnad M, Mittelsten Scheid O, Rensing SA, Schranz ME, Theißen G, Mummenhoff K, Leubner-Metzger G (2016). Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiology 172:1691-1707
• Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowská D, Turečková V, Ignatz M, Sperber K, Voegele A, de Jong H, Urbanová T, Strnad T, Leubner-Metzger G (2014). DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences of the USA 111(34): E3571–E3580
• Voegele A, Graeber K, Oracz K, Tarkowská D, Jacquemoud D, Turecková V, Urbanová D, Strnad M, Leubner-Metzger G (2012) Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. Journal of Experimental Botany 63: 5337-5350
• Finch-Savage WE, Leubner-Metzger G (2006). Seed dormancy and the control of germination.
Tansley review: New Phytologist 171: 501-523

How good is research at Royal Holloway, University of London in Biological Sciences?

FTE Category A staff submitted: 24.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully




Cookie Policy    X