Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Entropy calculation to help understand societal change.


   Department of Archaeology

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr R Doonan, Dr A Buckley  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

PLEASE NOTE: Dr Roger Doonan and Dr Alastair Buckley are joint lead supervisors.

Secondary Supervisors are:
Prof Martin Mayfield (Civil engineering) - [Email Address Removed]
Dr Inaki Esnaola (ACSE) - [Email Address Removed]

The Grantham Centre for Sustainable Futures focuses on advancing the science of sustainability and connecting it with the policy debate around how humans can live in a more sustainable way.
grantham.sheffield.ac.uk

We are recruiting Grantham Scholars who will combine outstanding intellect with a strong commitment to public engagement, leadership and action. If these principles match your ambitions, you are invited to apply for one of our interdisciplinary PhD research projects to help solve the challenges of sustainability. You will be supported by the Grantham Centre through a unique training programme, designed to equip to with the skills to become a policy advocate and leader in sustainability matters.

Your application for this studentship should be accompanied by a CV and a 200 word supporting statement. Your statement should outline your aspirations and motivation for studying in the Grantham Centre, outlining any relevant experience.

Please submit this in the online application. Please note: in online application process please select ’standard PhD’ not DTC option.

Project Description
A missing ingredient in our understanding of human influence on global environmental change is the quantitative measure of the energy interactions of societies operating under varied technological and geographical conditions.

This project seeks to employ the archaeological and historical data for the comparative investigation of energy use in different societies. The project lies at the interfaces between physics, archaeology and ecology and it will be addressed by developing models to calculate entropy generation rates within the case study systems. Entropy generation (as opposed to energy use) allows the “quality” or “usefulness” of different energy resources to be measured. We will explore how we might calculate entropy generation in a series of sub-systems coupled with the environment with the aim of learning about the conditions of social change. A critical aspect of the study should be the development of methods and models that provide baseline data for both the critical analysis of existing studies and to inform current and emerging policy decisions about the future of our planet.

We are looking for strong computer programming and maths skills, a good grounding in science and a passionate interest in society, history, archaeology and the future of humanity.

Over time, human communities have existed in a variety of social configurations ranging from localised hunter-gatherer communities to extensive imperial hierarchies and more recently as interconnected nation states. Accompanying the transitional development of human societies is the fundamental and significant reorganisation of how communities access, exploit and dissipate energy. Although energy allows human communities to sustain themselves under a myriad of cultural conditions, few studies have sought to understand social transformation in terms of the development of energy systems.

It is proposed to investigate not only details of a range of human ecologies in terms of settlement, but also in terms of wider environmental and social relations such as settlement catchment area, the proximity of key resources i.e. water, food, ores and minerals, etc..

The goal is to calculate the entropy generation rate of each of the coupled processes in a particular model social configuration. These computations will be done for each of the thermodynamic couplings within the overall system configuration and over time with steps of days, weeks and years depending on the configurations being researched.

The project be divided into the following tasks:
· The development of a (simple as possible) computational framework that can model entropy generation rates for a range of different types of energy conversion sub-systems. (metal production, grain production, cattle farming, house building, artefact production, landscape modification, ritual burial, etc..)
· An assessment and selection of a range of archaeological case studies and accompanying data for populating the quantitative entropy model
· The modelling, analysis and comparisons of entropy generation rates across the different configuration case studies.
· The development and dissemination of these findings in the context of modern policy guidance. The active promotion of the use of entropy in a policy framing.

Key Words
Social change, Energy, Entropy, Human impact, Environment

Funding Notes

This four year studentship will be fully funded at Home/EU or international rates.

Support for travel and consumables (RTSG) will also be made available at standard rate of £2,627 per annum, with an additional one-off allowance of £1,000 for a computer in the first year. Students will receive an annual stipend of £17,335 in 2015/16, rising with inflation thereafter. Applications should be received and complete by Monday 7th March 2016.

Where will I study?