• Northumbria University Featured PhD Programmes
  • University of Exeter Featured PhD Programmes
  • University of Macau Featured PhD Programmes
  • University of Manchester Featured PhD Programmes
  • University of Stirling Featured PhD Programmes
  • University of Birmingham Featured PhD Programmes
  • University of Surrey Featured PhD Programmes
University of Warwick Featured PhD Programmes
Imperial College London Featured PhD Programmes
ESPCI Paris Tech Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
University of Warwick Featured PhD Programmes

Imaging the Dynamics of Inelastic and Reactive Molecular Collisions

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Prof Matthew Costen
  • Application Deadline
    No more applications being accepted
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Detailed understanding of molecular collisions, and the resulting energy transfer and/or reaction is vital to improved modelling of a wide range of important chemical environments, including planetary atmospheres, combustion and plasma systems and astrochemistry. In this project, you will apply state-of-the-art chemical dynamics techniques; crossed-molecular-beam scattering, coupled with high-resolution laser spectroscopy and velocity-map ion-imaging, to study the dynamics of molecular collisions. One strand of work will involve inelastic energy transfer of radicals important in practical environments e.g. NO, OH and CH, with rare gases and small molecules. Measurements of differential scattering cross sections, correlated energy transfer and product rotational angular momentum polarization will be compared to scattering calculations to provide sensitive tests of theoretical models. Reactive collisions of O-atoms and OH with saturated, unsaturated and functionalized hydrocarbons will form an additional work programme. Differential cross sections and product energy disposal will provide information on reaction pathways and branching, which will complement and inform the on-going programmes in our group of inelastic and reactive scattering of these species at gas-liquid interfaces, directly relevant to atmospheric chemistry.

You will receive an excellent training in modern aspects of experimental science, including: laser spectroscopy; high vacuum technology; electronic data capture; computer modelling. You will be part of a vibrant chemical dynamics research group of academics, post-docs, and PhD students. See our group website at www.dynamics.eps.hw.ac.uk

The Institute of Chemical Sciences (ICS) is an excellent environment for PhD research, with a thriving community of academics, post-doctoral and PhD researchers spread across three sections: Molecular Chemistry, Materials Chemistry, and Dynamics and Structure. ICS also has many links to the other research institutes within the overall umbrella of the School of Engineering and Physical Sciences, providing a strong interdisciplinary theme to our research. Heriot-Watt University occupies an attractive campus site on the outskirts of Edinburgh, with excellent public transport links to the centre of one of the Europe’s most exciting cities.

Funding Notes

You should have, or expect to receive, a First or 2:1 Class MChem degree in Chemistry, or equivalent in a relevant related subject. This project is funded by an EPSRC Doctoral Training Partnership (DTP), providing tuition fees and a stipend (approx. £14,500) for 3.5 years, and is only available to UK & EU nationals resident in the UK for the last 3 years.

References

T.F.M. Luxford, T.R. Sharples, K.G. McKendrick and M.L. Costen, J. Chem. Phys. 145 174304 (2016)
T.F.M. Luxford, T.R. Sharples, K.G. McKendrick and M.L. Costen, J. Chem. Phys. 147 013912 (2017)

Related Subjects

How good is research at Heriot-Watt University in Chemistry?

FTE Category A staff submitted: 30.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Let us know you agree to cookies

We use cookies to give you the best online experience. By continuing, we'll assume that you're happy to receive all cookies on this website. To read our privacy policy click here

Ok