Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Uncovering the links between agricultural trace gas emissions and crop productivity


   College of Science & Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof H Boesch, Dr J Kaduk  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

One of the major scientific and societal challenges of our time is to secure the food supply for a growing population in a changing world. However, the productivity of crops is highly sensitivity to climate variations in temperature or rainfall and it is estimated that 30% globally (regionally up to 60%) of the observed variations in crop productivity can be explained by variations in climatic conditions.
Agriculture itself is also a significant contributor to the emission of climate-relevant greenhouse gases. Globally, agriculture is the second largest emission source behind the energy sector. Agriculture contributes about 10% to the total greenhouse gas emissions of the UK (>40% for methane and >70% for N2O). Plants also emit biogenic volatile organic compounds (BVOC) such as methanol or isoprene which lead to aerosol formation and interact with atmospheric chemistry and thus affect climate and local air quality.
If we want to move forward towards resilient and sustainable agriculture, it is important to understand how climatic fluctuations and change will impact agricultural crop production, what controls agriculture emissions of climate gases and how well we can project agricultural productivity and the related emissions into the future.
In this project, we will use detailed observations of key parameters characterising the meteorological conditions, soil conditions, crop productivity and trace gas fluxes of a monitored agriculture field used for crop production to evaluate the fundamental interplay between productivity, trace gases fluxes and external (meteorological) drivers. This will then be used to test our current understanding of plant functioning as represented by state-of-the-art land surface models, which form a key element in climate and Earth System models used for forecasting our future climate and the implication of climate change on regional ecosystems and agriculture.
The goals of this project are detailed observations of trace gas fluxes of a site similar to extensive crop prodcution and establishing links between climatic variations, trace gase fluxes and productivity. The project takes advantage of a well established collaboration of the Dept. of Geography and G’s Fresh in East Anglia.

Funding Notes

This studentship is one of a number of fully funded studentships available to the best UK and EU candidates available as part of the NERC DTP CENTA consortium.

For more details of the CENTA consortium please see the CENTA website: www.centa.org.uk.

Applicants must meet requirements for both academic qualifications and residential eligibility: http://www.nerc.ac.uk/skills/postgrad/

Please direct informal enquiries to the project supervisor. If you wish to apply formally, please do so via: http://www2.le.ac.uk/study/research/funding/centa/how-to-apply-for-a-centa-project

References

D.K. Ray et al., Climate variations explains a thrid of global crop yield variability, Nature communications, doi: 10.1038/ncomms6989, 2015
J. Gornall et al., Implications of climate change for agricultural productivity in the early twenty-first centruy, Phil. Trans. R. Soc. B, doi:10.1098/rstb.2010.0158, 2010