Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Rational Design of Glassy Materials


   Department of Physics

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Anita Zeidler, Prof Philip Salmon  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Glasses are increasingly important materials in science and engineering where attributes, such as their mouldability and transparency, lead to uses in e.g. building materials, optical devices and medical appliances. However, the inherent structural disorder of glassy materials makes it a challenge to control their properties. Understanding the structure of glass, and its relation to the material’s properties, is hence a cause for pressing concern. This project has a close involvement of an industrial partner (Corning Inc., www.corning.com).

Details:
You will be using the unconventional route of recovering to ambient conditions glassy materials that have been subjected to high pressure and high temperature conditions. The intention is to make novel materials with permanently increased density and new properties that cannot be obtained in any other way. A classic example of a crystalline counterpart is the processing of graphite (the “lead” in pencils) to form diamond under high pressure and temperature conditions. Both materials are made from carbon atoms, but only the diamond recovered to ambient conditions is hard and transparent.
The challenge is to design structures that give materials the desired properties, a route that is already extensively used in pharmaceutical drug design.
You will be involved in the development of state-of-the-art instrumentation for in situ high-pressure and high-temperature diffraction studies on crystalline and disordered materials, including the phase transitions between them. A key theme of the work is an identification of the essential physics behind these structural transformations that can lead to dramatic changes to material properties, with the long term aim of being able to construct materials with novel functional properties via the principles of rational design.

Applications:
Applicants should have a background in the physical sciences and have or expect to gain a First or Upper Second Class UK Honours degree, or the equivalent from an overseas University.

For informal enquiries, please contact Dr Anita Zeidler ([Email Address Removed]) or Professor Philip Salmon ([Email Address Removed]) f


Funding Notes

We welcome all-year-round applications from self-funding candidates and candidates who can source their own funding.

How good is research at University of Bath in Physics?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Where will I study?