Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Fully integrated EV energy storage using transport infrastructure


   The Grantham Centre for Sustainable Futures

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof David Stone, Dr Erica Ballantyne  No more applications being accepted  Awaiting Funding Decision/Possible External Funding

About the Project

The Grantham Centre for Sustainable Futures focuses on advancing sustainability research and connecting it with the policy debate around how humans can live in a more sustainable way.
grantham.sheffield.ac.uk

We are recruiting Scholars who will combine outstanding intellect with a strong commitment to public engagement, leadership and action. These ambitious individuals will complete interdisciplinary PhD research projects to help solve the challenges of sustainability. They will be supported by the Centre through a unique training programme, designed to equip them with the skills to become policy advocates and leaders in sustainability matters.

Your application for this studentship should be accompanied by a CV and a 200 word supporting statement. Your statement should outline your aspirations and motivation for studying in the Grantham Centre, outlining any relevant experience.

Please select ’Standard PhD’ and the Department of Electronic and Electrical Engineering. Fill in the title of your desired project and the name(s) of the supervisors’. The starting date of the PhD will be the start of the next academic year - 1 Oct 2017. The ’Funding stage’ on the form will be ’project studentship’.

Electric vehicles (EVs) are being viewed as a potentially effective technological response to address government targets to reduce road transport emissions. This PhD project (jointly supervised between Electrical Engineering and the Management School) seeks to examine the potential for surplus energy from the grid and mass transit systems such as railways, to be stored and re-used through the use of EV batteries, taking a multi-disciplinary approach to the problem.

- Examine the feasibility of using EV batteries for grid support and localised energy storage at railway station / car parks for all-electric and hybrid-electric vehicles
- Determine the impact on emissions reduction of using localised energy storage through EVs at mass charging points
- Identify the barriers and drivers for personal and fleet EV users to utilise mass energy storage and charging facilities
- Evaluate the business case for using different park & ride locations for pseudo-stationary energy storage using EVs
- Assess the suitability of different park & ride locations for EV grid storage and charging – in terms of scale, scope, acceptability etc.
- To identify and evaluate the technical barriers to implementation of EV grid storage in public locations and maximising impact of benefits to all players

With governments coming under increasing pressure to improve air quality, particularly in urban areas, many countries are considering policies to actively increase the number of EVs on their roads and ban diesel cars altogether by 2020. However, EVs are not entirely emission-free, many use grid generated electricity to charge on board batteries, thus generating emissions upstream in the supply chain from power plants. Therefore the potential for EVs to reduce greenhouse gas emissions depends on the nature of electricity generation used to charge EV batteries. Promoting EV use in urban environments has practical implications around electric grid capacity for mass EV charging, as the increased capacity required by a mass uptake of EV’s will require significant infrastructure investment to upgrade the existing grid supply in the UK.

A large proportion of private EV usage is commuting to and from the workplace, where vehicles are typically left during the day. The potential concentration of large numbers of EV’s in carparks, at offices, railway stations etc. could facilitate a creative approach to using EV batteries as pseudo-stationary energy storage. E.g. the use of say 100 EVs in a railway station carpark could be linked to an electrified railway to provide an energy buffer from decelerating trains, taking surplus energy from the train, which is usually dissipated as heat, and providing energy for acceleration. Additionally, electrified railways have a permanent electrical connection to the supply grid which is only fully utilised when a train passes through the local track section. This could allow mass EV charging when there is no train present without large upgrade costs for the utility grid infrastructure.

To achieve maximum impact, a synergic ‘full systems’ approach needs to be taken, presenting opportunities for cross disciplinary research, not only examining the technical issues presented by the system, but also the techno-economic benefits / costs to all players.

Key words:
Transport infrastructure, electric vehicles, energy storage, hybrid power systems, renewable generation, rail electrification, power, power systems

Funding Notes

This opportunity is available for a student from China only. This four year studentship will be partly funded by a ‘Mong Family’ alumni donation.

An offer from the Grantham Centre to cover the full tuition fees and research fees is subject to the student obtaining the additional funding from the China Scholarship Council (CSC). Further information available at http://apply.csc.edu.cn Applications to the CSC have to be made by 5 April 2017.

Applications to the Grantham Centre for Sustainable Futures at The University of Sheffield should be received and completed by Monday 6th March 2017.

Where will I study?