Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  EPSRC iCASE Funded PhD Studentship: Environmental optimisation of raw material sintering for steel manufacturing


   School of Aerospace, Civil, Electrical and Mechanical Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof P Holliman  No more applications being accepted  Funded PhD Project (UK Students Only)

About the Project

This studentship is funded by EPSRC iCASE with Tata Steel.

Start date: January 2018

Iron ore sintering is a crucial process within an integrated steel works which must meet the stringent chemical and physical criteria to prepare the ferrous burden for the blast furnace. It must also re-use a range of reverts that arise from across the steel works to ensure the cost-effective production of liquid iron. In this way, material can be recycled, recovering valuable Fe and C units.

During sintering, a blend of iron ores, fluxes, fuels, additives and reverts are added to a slow-moving grate and the top of this bed is ignited. The flame front is drawn through the bed by a strong flow of air, fusing material into pieces of clinker which are cooled, crushed and sent to the blast furnace. The process uses air that must be cleaned before being released along with coke as fuel. This project will study the chemistry of the sintering process and exhaust gases (e.g. particulates, trace organics & metals, NOx and SOx) to reduce emissions. The project will also consider partial replacement of coke (e.g. with biomass materials of sustainable origin). Given the large number of variables, the studies will produce complex datasets that can be interpreted using statistical tools and predictive systems such as principal components analysis (PCA) and artificial neural networks (ANNs). Evaluation of these data and constructed models will provide understanding into the formation of pollutants within the process and possible mitigation strategies.

The results and outputs from these studies will give insights into reducing and optimizing the environmental performance of the plant as well as improving the sustainability of the process. The project will be supervised with a close collaboration of experts from Port Talbot Works, Group Environment and Swansea University. The student will divide their time between these locations in order to maximize the learning opportunities needed to deliver a successful project.

Eligibility

Candidates should have an undergraduate degree (2:1 or higher) in engineering (e.g. materials or chemical engineering related), chemistry or related subject.

Funding Notes

The studentship covers the full cost of UK tuition fees, plus an annual stipend of £20,000.

There will also be additional funds available for research expenses.

Where will I study?