FindAPhD LIVE! Study Fair

Leeds

University of Sheffield Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
University of Auckland Featured PhD Programmes
University of Glasgow Featured PhD Programmes
FindA University Ltd Featured PhD Programmes

Production of bespoke biopolymers with controllable composition and microstructure

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr J Winterburn
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

The accumulation of plastic waste in the environment is a real and current concern [1], a consequence of our ever increasing use of ever plastics, especially in single use packaging, and the environmental persistence of these commonly used, non-biodegradable, petrochemical derived materials. Polyhydroxyalkanoates (PHAs) are a family of microbially produced, biodegradable biopolymers which are produced by various microorganisms as an intracellular energy store. PHAs can be produced from renewable, non-crude oil derived feedstocks and a range of interesting novel applications exist, including in the biomedical field. The main challenges which must be addressed if PHAs are to be widely used as replacements for conventional plastics are the high production costs and inconsistent PHA structure and properties, which lead to difficulties in polymer processing.

To be able to utilise PHAs more widely we need to better our understanding of the link between production and the material properties, as well as improve the yield and productivity of PHA producing fermentations. We already have an understanding of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer production in an extreme halophile, Haloferax mediterranei, [2] and have demonstrated that with controlled feeding of volatile fatty acids (VFAs) we are able to directly control both PHBV composition and microstructure [3]. This allows us to produce copolymers with a preselected 3HV fraction and to also preferentially produce random, block or blend copolymers.

The aims of this PhD project are;

- To further investigate the effect of VFA feeding on the mechanical properties of PHBV block copolymers and to produce triblock, or greater (A-B)n, type polymers .
- To characterise and application test the resulting PHBV block copolymers.
- To increase the productivity of PHBV producing fermentations though bioprocess engineering.

This project involves biochemical engineering, polymer science and materials characterisation and testing and is suitable for candidates with a background in chemical engineering, biochemical engineering, microbiology, biotechnology or materials science.

References

[1] https://www.theguardian.com/environment/plastic
[2] Ferre-Guell A and Winterburn J. Biomacromolecules, DOI: 10.1021/acs.biomac.7b01788 https://pubs-acs-org.manchester.idm.oclc.org/doi/10.1021/acs.biomac.7b01788
[3] Ferre-Guell A and Winterburn J. Extremophiles (2017) 21: 1037. DOI: 10.1007/s00792-017-0964-9 https://link-springer-com.manchester.idm.oclc.org/article/10.1007%2Fs00792-017-0964-9

How good is research at University of Manchester in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?
Chemical Engineering

FTE Category A staff submitted: 33.90

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities


FindAPhD. Copyright 2005-2018
All rights reserved.

Let us know you agree to cookies

We use cookies to give you the best online experience. By continuing, we'll assume that you're happy to receive all cookies on this website. To read our privacy policy click here

Ok