Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Understanding battery chemistry with in-situ electron microscopy


   Department of Materials

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr A W Robertson, Prof P G Bruce  Applications accepted all year round

About the Project

Understanding battery chemistry with in-situ electron microscopy
Dr Alex W Robertson and Prof Peter G Bruce

Lithium-ion batteries have revolutionised the way we think of energy storage, allowing for powerful devices that fit the palm of our hands, and massive battery arrays to supplement intermittent renewables. However there are fundamental limitations; the recent high profile fires that occurred in the Samsung Galaxy Note phones, and the 2013 grounding of the Boeing Dreamliner fleet, both illustrate this. The materials failures that occurred in these batteries risk becoming increasingly prevalent as we push Li-ion batteries to their maximum potential. New battery systems will be needed, such as Na-ion or Li-air, and a more fundamental understanding of the materials degradation mechanisms will be required to prevent failure.

This PhD project is based on using state-of-the-art transmission electron microscopy to characterise and understand these fundamental failure mechanisms at the atomic level, ultimately leading to the development of resilient battery designs.

Transmission electron microscopy (TEM) permits the characterisation of a material’s structure down to the atomic level, along with its chemical constitution by spectroscopy. TEM has been around for many years, but recent advances have seen the profile of this venerable technique rise dramatically, with a 2017 Nobel Prize awarded for its application to biological systems. Using this technique to aid the understanding battery chemistry has been historically difficult, as most battery chemistry occurs in solution. However, recent developments now allow for liquid phases to be studied within the TEM, permitting an unprecedented insight into the processes that occur in a battery during operation. The student, working with the world-leading battery and electron microscopy communities within the Materials Department, will harness TEM to understand the fundamental chemical and materials processes that occur in batteries.

Applications will be considered as and when they are received and this position will be filled as soon as possible, but the latest date for receipt of applications will be 24 August 2018.

On the application form, in the section headed ‘Departmental Studentship Applications’, you must indicate that you are applying for a funded studentship and enter the reference code for this studentship 18MATERIALS04.

Any questions concerning the project can be addressed to Dr Alex Robertson ([Email Address Removed]). General enquiries on how to apply can be made by e mail to [Email Address Removed]. You must complete the standard Oxford University Application for Graduate Studies. Further information and an electronic copy of the application form can be found at http://www.ox.ac.uk/admissions/postgraduate_courses/apply/index.html.

Funding Notes

This EPSRC-funded 3.5 year DPhil in Materials DTP studentship will provide full fees and maintenance for a student with home fee status (this status includes an EU student who has spent the previous three years (or more) in the UK undertaking undergraduate study). Candidates with EU fee status are eligible for a fees-only award, but would have to provide funding for their living costs from another source such as personal funds or a scholarship. The stipend will be £15,777 per year. Information on fee status can be found at http://www.ox.ac.uk/admissions/graduate/fees-and-funding/fees-and-other-charges.