Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Magmatic mass transfer through deep crust: Field relationships, chemistry and rheology


   Faculty of Environment

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr S Piazolo, Dr T Mueller  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

This exciting project aims to shed light on the long standing problem of how melt is transferred through the crust by a combination of field studies in Greenland and Ireland, lab-based microstructural and geochemical analyses. Depending on student’s interests investigations will be augmented by a choice of high temperature or analogue experiments and/or numerical modelling.
Fluids are instrumental in the evolution of Earth’s crust and mantle; they facilitate chemical exchanges that change basic rock properties and are important for crustal differentiation at the large scale. Fluid advection of heat and mass is central to nuclear waste storage, geothermal systems, and the formation of ore deposits.

The motivation for examining transfer of melt is rooted in a fundamental gap in our knowledge. It is poorly understood how magmatic mass transfer occurs through deep crust. This project builds on observations that significant migration of melt and mass transfer at the kilometre-scale can occur in localized areas resulting in significant changes to both the melt and the host through which melt migrates (Daczko, Piazolo et al. 2016).

This project aims to achieve a new level of understanding and quantification of the underlying principles governing magmatic mass transfer through deep crust. Three main questions will¬ be addressed:

1) Processes: What physiochemical processes are involved in magmatic mass transfer through deep crust?
2) Recognition: How can geologists recognize prior magmatic mass transfer in natural rocks? What is the physical and chemical fingerprint at micro- to meso-scales?
3) Effect: How does magmatic mass transfer affect the chemistry, geochronology, melt fertility and rheology (strength) of the crust it transfers through as well as the crust it forms at higher levels?

In this project, you will work with leading scientists at Leeds, UK, and the Centre of Excellence, (Macquarie University, Australia), together with experts on the geology of the field areas to develop an in-depth understanding of how melt moves through the crust and how such melt flux influences the chemical make-up of both the transgressing melt and the material that the melt passes through. Special emphasis will be given to the feedback between deformation and melt migration.

The studentship will involve

(1) field work in remote areas of West Greenland, and in Conemara, Ireland
(2) In-depth analysis of samples from the two field areas. This will include chemical analysis including major and minor elements, bulk rock geochemical analysis, quantitative microstructural analysis (e.g. Smith et al. 2015) and high resolution trace element analysis using synchrotron analysis.

In order to develop an in-depth understanding of the processes involved, you will be able to utilize additional tools, the choice made will depend on your individual background and interests:

(i) Numerical modelling of reactive flow
(ii) High temperature- high pressure experiments
(iii) Analogue modelling with real-time analysis (see for example Bons et al. 2001, 2008)
(iv) Trace element analysis using laser ablation and synchrotron techniques (Stuart et al. 2016)

You will work under the supervision of Assoc. Prof. Sandra Piazolo and Dr. Thomas Mueller within the IGT metamorphic and structural geology group. This project provides a high level of specialist scientific training in: (i) Field work and targeted sampling in lower crustal sections, (ii) state-of-the-art analytical techniques with special emphasis on both chemical and structural analysis of geomaterials; along with a selection of other skills including numerical modelling of reactive flow, high temperature and pressure experiments and analogue modelling. You will visit the Centre of Excellence “Core to Crust Fluid Systems” (CCFS, Macquarie University, Australia) for an extended period. In Australia you will work under the supervision of Assoc. Prof. Nathan Daczko.


References

Bons, P. D., Elburg, M. A. and Dougherty-Page, J. (2001). Journal of the Virtual Explorer, 4.
Bons, Paul D., et al. (2008) Geology 36, 851-854.
Daczko, N.R., Piazolo, S., Meek, U., Stuart, C.A. and Elliott, V. (2016), Scientific Reports, 6, 31369, doi:10.1038/srep31369.
Stuart, C.A., Piazolo, S. and Daczko, N.R. (2016), Geochemistry, Geophysics, Geosystems (G3), doi: 10.1002/2015GC006236.
Smith, J. R., Piazolo, S., Daczko, N. R., & Evans, L. (2015). Journal of Metamorphic Geology, 33, 557-577.

Where will I study?

 About the Project