Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  4D microCT evaluation and digital volume correlation (DVC) of Mg-based alloys for bone regeneration


   School of Mechanical and Design Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr G Tozzi, Prof Frank Witte, Prof Gordon Blunn, Dr Mike Barbeck  No more applications being accepted  Funded PhD Project (European/UK Students Only)

About the Project

Start date: 01 February 2018
Application deadline: 31 December 2017
Interview date: week commencing the 15th January 2018

Applications are invited for a fully-funded, three-year PhD studentship at the University of Portsmouth, to commence at the beginning of February, 2018. This PhD is in collaboration with Botiss Biomaterials and the successful applicant will get the opportunity to work as part of a multi-disciplinary team that brings together expertise in biomaterials for bone tissue regeneration, X-ray computed tomography (XCT), in situ mechanical testing and digital volume correlation (DVC). The candidate will benefit from support in Biomechanical Imaging available at the Zeiss Global Centre (ZGC) in the School of Engineering. Professor Gordon Blunn (University of Portsmouth) and Dr Mike Barbeck (Botiss Biomaterials) complete the supervisory team.


Project
Mg-based biomaterlals are able to provide structural support in load-bearing regions and allow bone regeneration to take place over time. However, uncontrolled degradation rate in vivo could result in insufficient mechanical stability during regeneration. Recently, high-resolution microCT imaging combined with in situ mechanical testing (4D evaluation) and digital volume correlation (DVC) allowed a detailed assessment of local microdamage progression, as well as the quantification of 3D deformation in bone-biomaterial systems. However, to date the mechanical competence of Mg-bone integration in vivo is still unknown. The aim of this project is to investigate how the mechanical behaviour of Mg-based implants is influenced by dissolution time and osteoregeneratlon performance. The project will ultimately produce fundamental knowledge aiming at fully establishing Mg-based alloys in the clinical context, through the development of a new generation of products for orthopaedic applications.

Candidate specification
Applications from candidates with a background in biomechanics, biomaterials, X-ray tomography, mechanical testing or related subject areas are welcomed. The successful applicant will receive adequate training and support to develop the necessary skills for a successful completion of the programme. We are seeking to appoint an enthusiastic and committed candidate with excellent interpersonal and organisational skills.

Fees
The fully-funded, full-time three-year studentship provides a stipend that is in line with that offered by Research Councils UK of £14,553 per annum as well as a waiver of tuition fees. The successful candidate will also receive full access to the University’s Graduate School Development Programme, research training, and internal qualifications that enable applications for Associate Fellowship of the Higher Education Academy.

Enquiries and application
Informal enquiries are encouraged and can be made to Dr Gianluca Tozzi on +44 (0)23 9284 2514 or via email at [Email Address Removed].

You can apply online by submitting your CV, two references and copies of any relevant qualifications. Please quote the project code – ENGN3861217- when prompted. In your application, please indicate your motivation for applying for the post and also outline how your experience and skill-set will contribute to the project. If English is not your first language, please provide evidence of IELTS (score of 6.5, with no component falling below 6.0).


Funding Notes

The fully-funded full-time studentship provides three years of support to cover tuition fees, and a stipend that is in line with that offered by Research Councils UK of £14,553 per annum.