Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  PhD studentship opportunity in the development of an in vitro cardiovascular model for drug screening


   Faculty of Health & Medical Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr R Lewis, Dr I Jurewicz  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

Based in the lab of Dr Rebecca Lewis, Faculty of Health and Medical Sciences, this is a multidisciplinary project in collaboration with the Department of Physics.

Healthy cardiac tissue is exposed to a constant mechanical stress and strain from elastic contraction and relaxation, and cells must appropriately respond to electrical stimuli carried through the tissue to enable unified contraction. It has been shown that disturbances in these excitation patterns creates a risk of life-threatening arrhythmias for patients. Additionally, a key aspect of gaining regulatory approval of drugs developed for human patients or other species requires cardiac safety trials. There is a need for an efficient, reliable and cost worthy assay for cardiac safety screening through a comprehensive in vitro pro-arrhythmic protocol. This will require the establishment of native cardiac myocyte cell lines on electrically stimulated carbon nanotube scaffolds that are suitable for interrogation using various drug challenges. Such a platform will allow us to test existing drugs for repurposing efforts as well as new drugs in the pipeline.

The aim of this project is to establish an understanding of the interactions between cardiomyocytes and carbon nanotube scaffolds on a nanoscale, by characterising the phenotype of cells on these scaffolds, and to then use this knowledge to develop an in vitro cardiovascular model for drug testing. Therefore, this project will develop a conductive carbon nanotube scaffold, which reliably promotes cardiomyocyte growth in culture, and then utilise this to induce arrhythmia through electrical stimulation of the cells. These scaffolds can then be coated with pro and anti-arrhythmic drugs and drug efficiency determined. Evaluation of cell phenotype and electrophysiological function will be a significant part of this work throughout.

This is a multidisciplinary project involving physics, engineering, materials science and life sciences, therefore it will give the successful applicant an exciting opportunity to work across the scientific disciplines.

This project will be supervised by Dr Rebecca Lewis, Dr Izabela Jurewicz and Dr Kamalan Jeevaratnam. Training in all techniques will be provided by the supervisory team. The student will be strongly encouraged to participate in workshops and networking opportunities run by the Researcher Development Programme and to present their research at internal and external conferences.

How to Apply:
Please apply for this PhD through the School of Veterinary Medicine PhD applications portal https://www.surrey.ac.uk/postgraduate/veterinary-medicine-and-science-phd (click on the “Apply” tab). Applicants are encouraged to contact Dr Rebecca Lewis ([Email Address Removed]) to discuss the project informally prior to applying.

Applicants should have a first-class or upper second-class honours or equivalents in Biomedical Sciences, Biological Sciences, Physiology or a similar subject. A Masters degree in a biology-related subject is desirable but not essential.



Funding Notes

This PhD studentship has been generously funded by the Legacy of Mr Kenneth Longhurst. A stipend in line with RCUK funding levels, materials and consumables will be provided from the research project. The student is expected to pay standard tuition fees for postgraduate research. For further information see: https://www.surrey.ac.uk/postgraduate/veterinary-medicine-and-science-phd (click on the Fees and Funding tab).