• Carlos III Health Institute Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
Ludwig-Maximilians-Universität Munich Featured PhD Programmes
University of Nottingham Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Southampton Featured PhD Programmes
National University of Singapore Featured PhD Programmes

Information Component Analysis via Deep Learning

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

As their prominent characteristics, perceptual data often convey the mixing information, which often results in the inadequate performance for a specific perceptual information processing task due to the interference of irrelevant information components. For example, facial images typically convey the mixing information including identity and expressions. For specific tasks like face and facial expression recognition, the mixing information components are hardly separable, which results in difficulties in either of two tasks. The same problem also exists in speech information processing where speech conveys the mixing information including linguistic, speaker, emotional and environmental characteristics. Furthermore, there is no equal amount of information for mixing components; e.g. linguistics often overwhelmingly dominates the information in speech. The nature of perceptual data gives rise to considerable challenges in their modelling, analysis and recognition.

The project is going to investigate and develop a generic approach to information component analysis for perceptual data with state-of-the-art machine learning techniques, deep learning. Surrounding the main theme on how to disentangling/extracting information components, main issues to be studied include objective-driven high level abstraction of perceptual data in flexible representation forms, novel building blocks and deep learning models including architectures and learning algorithms to carry out an information component "filter’ and theoretic information aspects in measuring the extracted information components. For demonstration, an information component analysis prototype would be developed for a real application, e.g., speech or facial information component analysis. In general, this project is suitable for one who is interested in fundamental research in machine learning while it is acceptable for one who has a relevant application problem in mind and wishes to tackle their problems with an emerging technology such as deep learning.

It is worth highlighting that the hypotheses set in this project are original and hence this is an extremely challenging project of a great novelty. In order take this project, thus, it is essential to be highly self-motivated and to have excellent background knowledge in mathematics, machine learning, image or speech signal processing and good programming skills. If you are interested in this project, please first visit my research student page: http://staff.cs.manchester.ac.uk/~kechen/ for the required materials and information prior to contacting me.

Funding Notes

This School has two PhD programmes: the Centre for Doctoral Training (CDT) 4-year programme and a conventional 3-year PhD programme.

School and University funding is available for both programmes on a competitive basis.

For further details, please see our funding pages here: View Website

References

The minimum requirements to get a place in our PhD programme are available from:
http://www.cs.manchester.ac.uk/study/postgraduate-research/programmes/phd/apply/entry/

Related Subjects

How good is research at University of Manchester in Computer Science and Informatics?

FTE Category A staff submitted: 44.86

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X