• Staffordshire University Featured PhD Programmes
  • University of Tasmania Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • University of Pennsylvania Featured PhD Programmes
  • Aberdeen University Featured PhD Programmes
  • FindA University Ltd Featured PhD Programmes
University of York Featured PhD Programmes
EPSRC Featured PhD Programmes
Peter MacCallum Cancer Centre Featured PhD Programmes
Coventry University Featured PhD Programmes
University of Reading Featured PhD Programmes

Hybrid control systems: using formal verification to improve the control loop

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

The complexity of today’s technological applications means that automated and semi-automated processes have become proportionately more complicated. With consumers demanding more from automated services, the need for safety-critical and resilient systems - that is, systems capable of preserving stability despite uncertainties and recovering from contingencies - becomes more pressing. Complex engineering systems are continually changing, highly nonlinear, and combine continuous and discrete, smooth and abrupt dynamics. Their combined dynamics can be seen as a hybrid dynamical system. The process of checking in an automated way that a system behaves correctly is called ’formal verification’ in the theory of computer science; the elimination of negative behaviours falls into the field of control engineering.

But, how can we accurately test the performance of complex systems, and, if necessary, to modify their behaviour by means of a controller to meet desired specifications? This research will answer this question by applying methods beyond classical engineering procedures. It will integrate formal verification results into control schemes, which will lead to more effective designs. To this end, different disciplines will be combined, mainly, control engineering and theory, formal methods of computer science, and dynamical systems methods. Depending on the student’s interests, different application domains can be explored. This research would be part of the project DYVERSE (DYnamical-driven VERification of Systems with Energy considerations).

Funding Notes

Candidates who have been offered a place for PhD study in the School of Computer Science may be considered for funding by the School. Further details on School funding can be found at: View Website.


References

The minimum requirements to get a place in our PhD programme are available from:
http://www.cs.manchester.ac.uk/study/postgraduate-research/programmes/phd/apply/entry/

How good is research at University of Manchester in Computer Science and Informatics?

FTE Category A staff submitted: 44.86

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X