• FindA University Ltd Featured PhD Programmes
  • Ross University School of Veterinary Medicine Featured PhD Programmes
  • University of Birmingham Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • Coventry University Featured PhD Programmes
  • Lancaster University Featured PhD Programmes
  • University of Manchester Featured PhD Programmes
Ludwig-Maximilians-Universität Munich Featured PhD Programmes
EPSRC Featured PhD Programmes
Coventry University Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
University of Surrey Featured PhD Programmes

Dissipativity-related properties in hybrid automata

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr E Navarro-Lopez
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

This research explores energy-related properties of hybrid systems, especially in hybrid automata. Here, energy refers to the abstract energy of the system which may not have a physical interpretation. The formalization of the abstract energy of dynamical systems is achieved by means of the dissipativity theory, which analyses dynamical systems behaviour by means of the exchange of energy with the environment. A dissipative system does not generate and cannot store all the energy supplied to it. Instead, it dissipates energy in some way. Different classes of dissipativity can be obtained according to the balance between the stored and the externally supplied energy in a system. The most important among these is passivity. Dissipativity, especially passivity, has been extensively used in feedback control because of its stability implications. However, they have been overlooked in the analysis and control of hybrid systems, and have been especially underused in the computational-oriented modelling framework of hybrid automata.

This research fills the gap between dissipativity theory and hybrid systems. Due to the direct physical interpretation of dissipativity-based analysis and control, the applications of this project are vast and wide-ranging. Depending on the student’s interests, different application domains can be explored. This research would be part of the project DYVERSE (DYnamical-driven VERification of Systems with Energy considerations).

Funding Notes

Candidates who have been offered a place for PhD study in the School of Computer Science may be considered for funding by the School. Further details on School funding can be found at: http://www.cs.manchester.ac.uk/study/postgraduate-research/programmes/phd/funding/school-studentships/.

References

The minimum requirements to get a place in our PhD programme are available from:
http://www.cs.manchester.ac.uk/study/postgraduate-research/programmes/phd/apply/entry/

How good is research at University of Manchester in Computer Science and Informatics?

FTE Category A staff submitted: 44.86

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Cookie Policy    X