• University of Leeds Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
  • Carlos III Health Institute Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
University of York Featured PhD Programmes
University of Westminster Featured PhD Programmes
University of Nottingham Featured PhD Programmes
University of Leeds Featured PhD Programmes
University of Reading Featured PhD Programmes

Epigenetics and Cancer: Development of Novel Tools to Determine how Aberrant V(D)J Recombination Reactions Cause Leukaemia

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

V(D)J recombination generates a highly diverse set of immunoglobulin and T cell receptor genes to enable vertebrates to fight a vast range of infections. However, since the reaction involves the breakage and rejoining of DNA, it is inherently risky and between 35-40% of lymphoid cancers are thought to have arisen from mistakes in V(D)J and related recombination reactions. Since there are over 15,000 new cases of lymphoid cancer per year in the UK alone, there is a strong need to better understand what causes these aberrant recombination reactions

We have now developed a novel inducible V(D)J recombination system in which recombination can be activated at will. This project will use the inducible recombination system to examine the safeguards that prevent chromosome translocations during V(D)J recombination. The project will utilize state-of-the-art technologies to give the student first class training in modern molecular, cellular and cancer biology. It will focus on the epigenetic and transcriptional regulation of V(D)J recombination and how errors in this process lead to leukaemia.

References

Scott JN, Kupinski AP, Kirkham CM, Tuma R, Boyes J. (2014) TALE proteins bind to both active and inactive chromatin. Biochem J. 458:153-8. doi: 10.1042/BJ20131327.

Bevington, S., and Boyes, J., (2013) Transcription-coupled Eviction of histones H2A/H2B governs V(D)J recombination. EMBO J. 32:1381-92

de Thonel, A., Vandekerckhove, J., Lanneau, D., Selvakumar, S., Courtois, G., Hazoume, A., Brunet, M., Maurel, S., Hammann, A., Ribeil, J.A., Zermati, Y., Gabet, A.S., Boyes, J., Solary, E., Hermine, O., Garrido, C. (2010) HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood. 116, 85-96.

Palacios, D., Summerbell, D., Rigby, P.W.J. and Boyes, J. (2010) Interplay between DNA Methylation and Transcription Factor Availability: Implications for Developmental Activation of the Mouse Myogenin Gene. Molecular and Cellular Biology. 30, 3805-3815.

*Baumann, M., *Nightingale, K., Eberharter, A., Mamais, A., Becker, P., and Boyes, J. (2007) Acetylation Stimulates V(D)J Recombination by Regulating Accessibility to Nucleosome Remodelling Complexes. Nucleic Acids Research. 35, 6311-21.

Hernandez-Hernandez, A., Ray, P., Litos, G., Ciro, M., Ottolenghi, S., Beug, H., and Boyes J. (2006) Acetylation and MAPK Phosphorylation Co-operate to Regulate the Degradation of Active GATA-1 EMBO J. 25, 3264-74.

Baumann M, Mamais A, McBlane F, Xiao H, Boyes J. (2003) Regulation of V(D)J recombination by nucleosome positioning at recombination signal sequences. EMBO J. 22:5197-207.

McBlane F, Boyes J. (2000) Stimulation of V(D)J recombination by histone acetylation. Curr Biol. 10:483-6.

Boyes, J., Byfield, P., Nakatani, Y. and Ogryzko, V. (1998) Regulation of GATA-1 Activity by Acetylation. Nature, 396: 594-598.

How good is research at University of Leeds in Biological Sciences?

FTE Category A staff submitted: 60.90

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X