• University of Mannheim Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
  • Carlos III Health Institute Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
University of Manchester Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Leeds Featured PhD Programmes
Manchester Metropolitan University Featured PhD Programmes
University of Manchester Featured PhD Programmes

Beam-driven plasma wakefield acceleration at Strathclyde/SLAC/UCLA/RadiaBeam

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

We are on the quest towards 5th generation light sources and ultracompact electron accelerators -- the time-resolved microscopes of the 21st century. Motivated and excellent PhD candidates, ideally with a background in laser and/or beam driven plasma wakefield acceleration are required to help lay the foundations for this. Our approach is to combine the best of beam-driven plasma wakefield acceleration (PWFA) as well as laser wakefield acceleration (LWFA) to generate the highest quality electron bunches ever produced. These will then be essential ingredients for highest performance future light sources such as FELs. International flagship experiments (at conventional accelerators such as E-210 "Trojan Horse" at FACET/SLAC, at FLASHForward, and at CLARA/Daresbury) will be complemented by hybrid LWFA experiments at laser-plasma-accelerators worldwide. In addition, first-class high performance computers and state-of-the-art simulation codes (particle-in-cell etc.) will be used to model the interaction, and to help understand it theoretically. The electron beam driver will set up the plasma wave, and a low energy laser pulse will ionize an additional plasma component locally within this plasma wave. This leads to ultracold bunches, which are a prerequisite for the ultrahigh bunch quality. These bunches would not even have a quality in terms of emittance which is far better when compared to other plasma-based approaches, but also would have better beam quality in many regards than the best bunches from conventional accelerators such as the LCLS in terms of (5D) brightness, for example.
The E210 "Trojan Horse" collaboration Srathclyde-SLAC-UCLA-Hamburg et al. was concluded with breakthrough results in spring 2016 in the final run of FACET’s lifetime, tight in time before shutting down to make way for LCLS-II. Now, the exploitation phase of the accumulated data has begun, in which the PhD student would participate. At the same time, the preparation time for SLAC FACET-II, the new advanced accelerator test facility at SLAC, has started and will be a focus for the PhD student.
The PhD candidate would work in a truly international and multi-disciplinary collaboration, being based at the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) in Glasgow. SCAPA is the flagship project of SUPA, the biggest physics alliance in the UK. It is located in the heart of Glasgow as part of the University of Strathclyde and the Technology Innovation centre TIC. Our goal is to demonstrate the novel scheme, build light sources (FEL, Thomson etc.) which will exploit the bunch brightness and multi-bunch schemes, and then push it further to the industrial level. While being based at Glasgow, the student(s) would be placed on long-lasting research stays at SLAC, UCLA and at RadiaBeam (industry SME) in between Los Angeles and the Bay Area, to foster the intense collaboration between US and Strathclyde.
The student would be part of a new Strathclyde Centre for Doctoral Training (SCDT) P-PALS (Plasma-based Particle and Light Sources), and the Cockcroft Institute, the UK’s university-based centre for accelerator development.

If you are interested in a PhD in this environment and think you are fit, please contact Prof. Bernhard Hidding via email or phone, ideally prior to your formal application to dicuss the options.

Funding Notes

The PhD student will be a student of University of Strathclyde as part of the newly created Strathclyde Centre for Doctoral Training P-PALS, but will be on extended research stays in the US at SLAC in Stanford, USA, and UCLA, Los Angeles, in order to carry through R&D which is crucial in the context of FACET-II, the successor of the world's pioneering beam-driven plasma wakefield accelerator facility FACET at SLAC.

References

scapa.ac.uk
http://silis.phys.strath.ac.uk/
hybrids.desy.de
facet.slac.stanford.edu
http://www.eupraxia-project.eu/

Ultrahigh brightness bunches from hybrid plasma accelerators as drivers of 5th generation light sources, B. Hidding, G.G. Manahan, O Karger, A Knetsch, G Wittig,
D A Jaroszynski, Z-M Sheng, Y Xi, A Deng, J B Rosenzweig, G Andonian,, A Murokh, G Pretzler, D L Bruhwiler and J Smith, J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 234010 (invited)

Hybrid modeling of relativistic underdense plasma photocathode injectors, Y. Xi, B. Hidding, D. Bruhwiler, G. Pretzler, and J. B. Rosenzweig, PRSTAB 16, 031303 (2013)

Ultracold Electron Bunch Generation via Plasma Photocathode Emission and Acceleration in a Beam-driven Plasma Blowout, B. Hidding, G. Pretzler, J.B. Rosenzweig, T. Königstein, D. Schiller, D.L. Bruhwiler, Physical Review Letters 108, 035001, 2012

Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration, B. Hidding, J. B. Rosenzweig, Y. Xi, B. O'Shea, G. Andonian, D. Schiller, S. Barber, O. Williams, G. Pretzler, T. Königstein, F. Kleeschulte, M. J. Hogan, M. Litos, S. Corde, W. W. White, P. Muggli, D. L. Bruhwiler and K. Lotov, AIP Conf. Proc. 1507, 570 (2012)

How good is research at University of Strathclyde in Physics?

FTE Category A staff submitted: 27.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X