• Carlos III Health Institute Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Bristol Featured PhD Programmes
University of Liverpool Featured PhD Programmes
University of Oxford Featured PhD Programmes
University of Warwick Featured PhD Programmes
University of Bristol Featured PhD Programmes
University of Manchester Featured PhD Programmes

Graphene as a platform for new topological phases of electronic matter

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Prof Fuhrer
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Graphene is an atom-thick plane of carbon and the basic constituent of graphite. Electrons in graphene behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions; the experimental observation of these properties led to the 2010 Nobel Prize in Physics. A variety of schemes have been proposed to realize new electronic states by introducing a mass and bandgap in graphene. One scheme involves transition metal adatoms on graphene which add strong spin-orbit coupling, resulting in a bandgap and a topological insulating quantum spin Hall phase, or, in the case of magnetic order, a quantum anomalous Hall phase. Such phases could carry dissipationless edge currents at room temperature and could be used in future electronics or quantum computing technologies.



This PhD project will characterize the electronic properties of graphene with metal adatoms. In the Fuhrer laboratory at Monash adatom-modified graphene will be created controllably in ultra-high vacuum (UHV), and studied with in situ electronic transport measurements and low-temperature scanning probe microscopy capable of imaging the atomic structure of the modified material. Complementary experiments will be carried out at the Australian Synchrotron to probe the electronic structure of adatom-modified graphene using photoemission spectroscopy.

Details of our research group can be found here http://fuhrerlab.physics.monash.edu.au/research
and if you have any questions please contact Prof Michael Fuhrer at [email protected]
Interested applicants must meet Monash Universities PhD entry requirements. See following link:

http://monash.edu/science/about/schools/physics/postgrad/apply-postgrad.html

Funding Notes


Scholarships are available and cover tuition and health insurance costs (for International candidates) and provide a living stipend of AUD25,849 per year. Exceptional candidates may receive AUD30,000 per year.

Share this page:

Cookie Policy    X