• FindA University Ltd Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • Aberdeen University Featured PhD Programmes
  • University of Tasmania Featured PhD Programmes
  • University of Pennsylvania Featured PhD Programmes
  • Staffordshire University Featured PhD Programmes
University of Manchester Featured PhD Programmes
Imperial College London Featured PhD Programmes
Coventry University Featured PhD Programmes
Peter MacCallum Cancer Centre Featured PhD Programmes
FindA University Ltd Featured PhD Programmes

Graphene as a platform for new topological phases of electronic matter

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Graphene is an atom-thick plane of carbon and the basic constituent of graphite. Electrons in graphene behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions; the experimental observation of these properties led to the 2010 Nobel Prize in Physics. A variety of schemes have been proposed to realize new electronic states by introducing a mass and bandgap in graphene. One scheme involves transition metal adatoms on graphene which add strong spin-orbit coupling, resulting in a bandgap and a topological insulating quantum spin Hall phase, or, in the case of magnetic order, a quantum anomalous Hall phase. Such phases could carry dissipationless edge currents at room temperature and could be used in future electronics or quantum computing technologies.



This PhD project will characterize the electronic properties of graphene with metal adatoms. In the Fuhrer laboratory at Monash adatom-modified graphene will be created controllably in ultra-high vacuum (UHV), and studied with in situ electronic transport measurements and low-temperature scanning probe microscopy capable of imaging the atomic structure of the modified material. Complementary experiments will be carried out at the Australian Synchrotron to probe the electronic structure of adatom-modified graphene using photoemission spectroscopy.

Details of our research group can be found here http://fuhrerlab.physics.monash.edu.au/research
and if you have any questions please contact Prof Michael Fuhrer at
Interested applicants must meet Monash Universities PhD entry requirements. See following link:

http://monash.edu/science/about/schools/physics/postgrad/apply-postgrad.html

Funding Notes


Scholarships are available and cover tuition and health insurance costs (for International candidates) and provide a living stipend of AUD25,849 per year. Exceptional candidates may receive AUD30,000 per year.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X