• Staffordshire University Featured PhD Programmes
  • FindA University Ltd Featured PhD Programmes
  • Aberdeen University Featured PhD Programmes
  • University of Southampton Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • University of Pennsylvania Featured PhD Programmes
University of Glasgow Featured PhD Programmes
Coventry University Featured PhD Programmes
University of Bristol Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
National University of Singapore Featured PhD Programmes

The biogenesis of short secretory proteins: pathways for posttranslational translocation at the mammalian endoplasmic reticulum

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

In contrast to the previously held view that mammalian secretory proteins are synthesised via a co-translational, signal recognition particle-dependent, pathway, recent studies show a substantial proportion exploit one or more distinct, post-translational, routes (Johnson et al., 2012; Lakkar et al., 2012; Shao and Hegde, 2011). Whilst they posses a typical, N-terminal endoplasmic reticulum (ER) targeting signal, one feature of such precursors is that they are unusually short, and hence unable to exploit the co-translational route. Our own work has focused on potential similarities between the biogenesis of short secretory proteins and that of tail-anchored membrane proteins, another group that are post-translationally inserted into the ER membrane (Rabu et al., 2009; Leznicki et al., 2010). We find clear evidence that the TRC40 pathway can deliver both tail-anchored and short secretory proteins to the ER (Johnson et al., 2012). Equally, whilst short secretory proteins are then translocated into the ER via the Sec61 complex (Johnson et al., 2012; Lakkar et al., 2012); this component plays no rule in the membrane insertion of tail-anchored proteins (Rabu et al., 2009). The goal of this PhD project will be to exploit our existing experimental platforms and analytical systems in order to investigate the contribution of different cytosolic components during the delivery of short secretory proteins (Johnson et al., 2012; Shao and Hegde, 2011). In addition we will establish the molecular mechanisms by which the Sec61 complex can efficiently transport a polypeptide chain across the ER membrane in the absence of ongoing protein synthesis. This work will provide new insights into the synthesis of important secretory proteins that play a range of important roles for normal human health and development.

Funding Notes

This project has a Band 2 fee. Details of our different fee bands can be found on our website. For information on how to apply for this project, please visit the Faculty of Biology, Medicine and Health Doctoral Academy website. Informal enquiries may be made directly to the primary supervisor.

References

• Johnson, N., Vilardi, F., Lang, S., Leznicki, P., Zimmermann, R. & High, S. (2012). TRC-40 can deliver short secretory proteins to the Sec61 translocon. J. Cell Sci. In press.
• Lakkar, A.K.K. et al. (2012). Efficient Secretion of Small Proteins in Mammalian Cells Relies on Sec62-Dependent Posttranslational Translocation. Mol. Biol. Cell. In press.
• Leznicki, P., Clancy, A., Schwappach, B. & High, S. (2010). Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123: 2170-2178.
• Rabu, C., Schmid, V., Schwappach, B. & High, S. (2009). Tail-anchored protein biogenesis – the beginning for the end? J. Cell Sci. 122: 3605-3612.
• Shao, S. and Hegde, R. S. (2011). A Calmodulin-Dependent Translocation Pathway for Small Secretory Proteins. Cell 147: 1576–1588.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X