• University of Pennsylvania Featured PhD Programmes
  • Aberdeen University Featured PhD Programmes
  • University of Tasmania Featured PhD Programmes
  • FindA University Ltd Featured PhD Programmes
  • Staffordshire University Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
University of York Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
University of Leeds Featured PhD Programmes
Coventry University Featured PhD Programmes
University of Reading Featured PhD Programmes

EngSci-MATS-130: Exploration of novel high strain rate impact tests for composites based on ultra-high speed photomechanics

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

In many areas of engineering, materials suffer deformation at high rates. This is the case when structures undergo impact, crash, blast, etc. Therefore, it is essential for design engineers to have reliable mechanical models to predict the behaviour of the materials in such applications. This is enhanced by the spectacular progress in numerical simulation which now enables to perform detailed computations of very complex situations. However, robust experimental identification of refined high strain rate deformation models is lagging behind and hinders the delivery of the full potential of numerical simulations. The scientific objective of this project is to explore the development of novel high strain rate mechanical tests in order to overcome the strong limitations of the current techniques relying on impact force measurement, such as the Split Hopkinson Pressure or Kolsky bar. The underpinning novelty here is to exploit the inertial effects developed in high strain rate load. This is possible through the use of state-of-the-art ultra-high speed (UHS) imaging (camera with submicrosecond interframe time) combined with image processing (like digital image correlation) and inverse identification (like the Virtual Fields Method, VFM).This project will look at developing this methodology to identify a damage model for fibre reinforced polymeric matrix composites. This is part of a larger effort within the framework of an EPSRC Fellowship programme called Photodyn (http://www.photodyn.org). This particular PhD project will be sponsored by the US Air Force Research Laboratory. The candidate will join a team of half a dozen researchers working on this topic and will benefit from excellent local expertise on UHS full-field deformation measurements and the VFM. This project is both numerical and experimental and of a very exploratory nature. This requires candidates with curiosity and enthusiasm to work at the cutting edge of the current knowledge in this area.

If you wish to discuss any details of the project informally, please contact Prof. Fabrice Pierron, Engineering Materials research group, Email: , Tel: +44 (0) 2380 59 2891.



How good is research at University of Southampton in General Engineering?

FTE Category A staff submitted: 192.23

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X