• London School of Economics and Political Science Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • Carlos III Health Institute Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
University College London Featured PhD Programmes
University of Nottingham Featured PhD Programmes
University of Sussex Featured PhD Programmes
University of Cambridge Featured PhD Programmes
University of Bristol Featured PhD Programmes

Rational engineering of NMDAR subunit-specific peptide affinity reagents and their pharmacological and functional characterisation as novel subtype specific NMDAR ligands.

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

The aim of this project is to engineer subunit-specific anti-GluN1/2/A/B polypeptide affinity reagents and to characterise their pharmacological specificity and functional activity on the recombinant NMDARs expressed in heterologous expression systems and on native NMDARs in hippocampal slice preparations.
N-methyl-D-aspartate receptors (NMDARs) play fundamental roles in central synaptic transmission, synaptic plasticity, pain perception, neuronal development and are implicated in many pathological changes and age-related neurodegenerative diseases. NMDARs subunit composition, allosteric regulation by ligands and modulators and the time course of Ca2+ rise may yield either long-term potentiation (LTP) or long-term depression (LTD) of excitatory synaptic transmission. However distinguishing and selective modulation of the native NMDARs pharmacologically remains problematical, due to the lack of subunit-specific ligands.
The existing dogma and the current approach to developing highly specific polypeptide based ligands or other affinity reagents (such as antibodies, antibody mimics, their fragments and aptamers against proteins) assumes and aims to achieve a high degree of complementarity at the interface between such a polypeptide or an affinity reagent and the surface of the target molecule. Such an interface is stabilised through a combination of hydrogen bonds (with or without additional water molecules), ionic and van der Waals interactions, and through spatial complementarity between the two molecules.
Artibody approach to the design of protein and sequence-specific peptide based affinity reagents, recently developed at RHUL, relies on the domain and loop-swapping, allowing us to replace labile structural elements of a protein by the same or similar elements of the engineered Artibody polypeptides. Because Artibody molecules are based on the target protein sequence, this approach should enable us to rationally design short peptide-based ligands for a given protein target.
This project is a collaboration between two groups at the School of Biological Sciences (Dr Soloviev and Dr Chen). Informal enquiries should be addressed to and .

How good is research at Royal Holloway, University of London in Biological Sciences?

FTE Category A staff submitted: 24.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X