• Staffordshire University Featured PhD Programmes
  • University of Tasmania Featured PhD Programmes
  • Aberdeen University Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • FindA University Ltd Featured PhD Programmes
  • University of Pennsylvania Featured PhD Programmes
University of Liverpool Featured PhD Programmes
Imperial College London Featured PhD Programmes
Peter MacCallum Cancer Centre Featured PhD Programmes
EPSRC Featured PhD Programmes
University of Tasmania Featured PhD Programmes

PhD Studentship – Large-scale quantum chemistry simulations of organic photovoltaics

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Prof Skylaris
  • Application Deadline
    Applications accepted all year round

Project Description

With growing global energy demands and pressure to switch to renewable energy sources, solar photovoltaics (PV) appear particularly attractive, not least because the power received by Earth from the Sun exceeds human power consumption by three orders of magnitude. Organic photovoltaics (OPV) offer certain advantages as compared to established PV technologies such as silicon panels. Organic cells can be lightweight and flexible, thus allowing greater freedom of design and low installation costs. Moreover, while current OPVs are only nearly half as efficient as silicon in full sunlight, they are more effective in diffuse light and indoors, where silicon panels struggle to perform.

A great deal of research effort has been devoted to studying OPV physics, but the connection between molecular structure of materials and device performance is still far from clear. Computer modelling of OPVs has largely been limited to on the one hand to phenomenological or coarse-grained simulations which lose the molecular picture from sight and on the other hand to QM calculations on model small molecules in vacuum. The most widely applied design principles (based on Scharber model) consider energy levels of individual materials separately – either measured for pure materials or calculated for isolated molecules. However, the energy levels of the donor and the acceptor change in different environments, and this difference is the driving force for charge separation (creation of free charge carriers) in high-performance OPVs.

This PhD project will use first principles quantum mechanical calculations to provide a detailed atomic-level understanding of OPV materials and models of bulk heterojunctions on a far larger scale than possible before by using the ONETEP program for linear-scaling first principles quantum mechanical calculations. The studies will utilise several of the capabilities of ONETEP, such as structure optimizations and molecular dynamics simulations of assemblies of oligomer chains with fullerenes, to elucidate the dependence of polymers’ IP, EA and Eg on chain length and proximity of fullerene; as well as relationships between molecular structure and packing. The simulations will also involve excited state calculations on polymer chains and polymer-fullerene assemblies, to build a realistic model of light harvesting and charge generation. As state-of-the-art and emerging simulation technologies will be used for this work it is expected that the project will also involve some method development within the ONETEP code.

This project, which is part of the CDT for Next Generation Computational Modelling (NGCM) (www.ngcm.soton.ac.uk), will be based at the School of Chemistry, University of Southampton and will be in collaboration with Merck Chemicals Ltd. Chilworth Technical Centre, Southampton. It will be co-supervised by Dr Chris-Kriton Skylaris and scientists from Merck. Applicants should have a top-level degree in Chemistry, Physics, Materials or related subject and a keen interest in computational chemistry theory and applications, and high performance computing.

Research themes and scientific publications from the Skylaris group can be found at http://www.southampton.ac.uk/compchem . The successful applicant will join a well-established research group in the area of computational chemistry.

They will also have access to state-of-the-art supercomputing facilities such as the Southampton IRIDIS supercomputer (http://www.southampton.ac.uk/isolutions/computing/hpc/iridis/), the ARCHER national supercomputer (http://www.archer.ac.uk/) and the latest developments in the ONETEP program (www.onetep.org). For further details please contact Dr Chris-Kriton Skylaris ([email protected]).

Funding Notes

The project is funded for 4 years and welcomes applicants from the UK and EU who have or expect to obtain at least an upper second class degree in in Chemistry, Physics, Materials or related subject. Funding will cover fees and a stipend at current research council rates of £ 14,296 per annum.

References

General enquiries should be made to [email protected]

How good is research at University of Southampton in Chemistry?

FTE Category A staff submitted: 44.80

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Share this page:

Cookie Policy    X