• University of Cambridge Featured PhD Programmes
  • Aberdeen University Featured PhD Programmes
  • University of Pennsylvania Featured PhD Programmes
  • Staffordshire University Featured PhD Programmes
  • University of Tasmania Featured PhD Programmes
University of Tasmania Featured PhD Programmes
University of Leeds Featured PhD Programmes
Imperial College London Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Reading Featured PhD Programmes

Characterisation of climate forcers in megacities and associated effects on public health and climate change

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr Delgado-Saborit
  • Application Deadline
    No more applications being accepted
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Overview:
Global solar radiation received at ground level depends on short-lived climate forcer pollutants such aerosols, black carbon (BC), which is a form of soot, tropospheric ozone, and sulphate. Changes in the amount of insolation have important implications for climate change. Also, many of these climate forcer pollutants are considered to be harmful for the health of the population.
Megacities in developing countries are experiencing a fast level of economic development, with its associated increase in emissions of pollutants from power generation, traffic, industries and heating systems. Therefore, the detriment of air pollution in emerging megacities puts millions of people at risk of developing chronic cardio-respiratory and neurodegenerative disease and increasing hospital admissions.
Hence it is important to characterise the amount of concentrations of such short-lived climate pollutats, as well as their sources and estimated burden of disease. This information will provide evidence for policy makers in order to choose the best alternatives to set policies aimed at reducing the abundance of these climate forcers pollutants with implications both at the regional and global scale reducing megacities contribution to climate change, and reducing also the burden of disease associated with such pollutants.
Methodology:
Aerosol samples collected onto filters, concentration of ozone measured with passive samplers and meteorological factors will be monitored at several locations of a megacity. Sampling locations will be selected to be representative of different pollution sources (e.g. traffic and solid fuel indoor use). Local emission profiles typical of such sources will be characterised. Source apportionment using CMB and PMF will be performed such as to identify the major sources contributing to air pollution and inform best mitigation policies to reduce air pollution. Dose-response functions will be used to estimate the burden of disease associated with the short-lived climate forcer pollutants. The contribution to radiative forcing associated with the measured concentrations in the megacities will be also estimated.
Training and skills:
The student will join the UK largest active research group with interests in air quality-health impacts, atmospheric composition and chemistry. Due to the international nature of this research and the group’s international links, there will be possibilities for collaboration with partners at the international level.
The successful candidate will have a first or second upper level class honours degree in Environmental Sciences, Chemistry or a closely related field and preferably a master degree in a relevant discipline. Experience of field and laboratory work would be an advantage.
Please direct application in the following format to Dr Delgado-Saborit ([email protected]):
- A CV, including transcript with full details of all University course grades to date
- Contact details for two academic referees
- A personal statement (750 words max) outlining your motivation, expectations and your research experience to date.

How good is research at University of Birmingham in Geography, Environmental Studies and Archaeology?

FTE Category A staff submitted: 25.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
Share this page:

Cookie Policy    X