• University of Glasgow Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • Carlos III Health Institute Featured PhD Programmes
  • University of Bristol Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
Ludwig-Maximilians-Universität Munich Featured PhD Programmes
Imperial College London Featured PhD Programmes
University College London Featured PhD Programmes
University College London Featured PhD Programmes
National University of Singapore Featured PhD Programmes

Targeting non-canonical DNA structures: designing and developing new molecules for genetic diseases such as cancer and diabetes (WALLERU16SF)

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr Waller
  • Application Deadline
    No more applications being accepted
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

It is often assumed that DNA exists only as the iconic Watson-Crick double helix but it can actually adopt many different types of structure depending on the sequence and environmental conditions. These alternative structures may play a role in gene expression (whether genes are switched on or off) and also in the development of genetic diseases such as cancer and diabetes. By targeting these alternative DNA structures, this could allow for more specific interventions and therapeutics compared to traditional chemotherapies.

This PhD project will involve studying how small molecules, with the potential to be drug candidates, interact with these special DNA structures. The work will be interdisciplinary and will involve training in a wide range of techniques, from organic synthesis of new molecules, characterisation of their interaction with DNA and their effect in cells. There will be the opportunity to work and collaborate with other research groups across the Norwich Research Park.

The student will have, or expect to obtain a first class, 2(i) or equivalent Honours degree in Chemistry, Physics, Biochemistry, Pharmacy or a related area.

Informal enquiries are welcomed; for further information please contact Dr Zoë Waller ([email protected])

Funding Notes

This PhD project is offered on a self-funding basis. It is open to applicants with funding or those applying to funding sources. Details of tuition fees can be found at http://www.uea.ac.uk/pgresearch/pgrfees.

A bench fee is also payable on top of the tuition fee to cover specialist equipment or laboratory costs required for the research. The amount charged annually will vary considerably depending on the nature of the project and applicants should contact the primary supervisor for further information about the fee associated with the project.

References

i) Balasubramanian, S; Hurley, LH; Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov. 2011 Apr;10(4):261-75.
ii) Brooks, TA; Kendrick, S; Hurley, L; Making sense of G-quadruplex and i-motif functions in oncogene promoters FEBS J. 2010 Sep;277(17):3459-69.
iii) Day, HA; Pavlou, P; Waller, ZAE; i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem. 2014 Aug 15;22(16):4407-18.

Share this page:

Cookie Policy    X