• University of Leeds Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • Carlos III Health Institute Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
  • University of Cambridge Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
University of Liverpool Featured PhD Programmes
University of Oxford Featured PhD Programmes
University of Leeds Featured PhD Programmes
University of Southampton Featured PhD Programmes
University of Manchester Featured PhD Programmes

Information Analysis of Multi-channel Data with Measure Theory

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr Lee
    Dr Mu
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (Students Worldwide)
    Funded PhD Project (Students Worldwide)

Project Description

Project Description:

Getting information from high dimension and multi-channel data is a big challenge for clustering and pattern recognition problem. In order to process multi-channel data such as multi-channel electromyography (EMG), feature extraction and classification process are needed. Different absolute mean value (DAMV), different absolute standard deviation value (DASDV), mean absolute value (MAV), and Zero crossing (ZC) methodology were used to get feature extraction. For classification, neural network (CNN) and other heuristic approach were applied. However, to get better performance hybrid structure with analytic approach is required. Euclidian or Manhattan distance and heuristic method showed effective, and design of similarity measure with two characteristics was effective in previous research. Research output on multi-channel data can be applied to more complex system such as security business including fingerprint and iris identification, and image processing enhancement, and the others recently. In a broad range of application areas including engineering and business, data is being collected at unprecedented quantity. Program is desired to undertake further investigations on the following research topics:

- Analysis of uncertain data Data uncertainty analysis needs mathematical backgrounds such as real number analysis, integration, statistics and related topic. Based on these fundamentals, we aim to provide a general result of data analysis methodology by means of similarity measures and entropy design.

- Multi-channel data analysis with measure theory, and retrieve characteristics form data sets. It is evident that the size and the numbers of experimental data sets available are increasing exponentially as the technology advances. In order to solve classification and clustering problems, similarity measures and data processing techniques are needed.

- Design of similarity measure and application to data. Finally, similarity measure and analyzing identifying measure is verified by applying to multi-channel data or artificial data.
Research progress and outcomes will be accomplished through providing academic opportunity such as regular seminar, paper submission to conference/journal, and external collaboration.

Requirements
The candidate should have a first class or upper second class honours degree, or a master’s degree (or equivalent qualification), in electrical or electrical engineering/computer science. Evidence of good spoken and written English is essential. The candidate should have an IELTS score of 6.5 or above, or an equivalent qualification, if the first language is not English. This position is open to all qualified candidates irrespective of nationality.

Degree: The student will be awarded a PhD degree from the University of Liverpool (UK) upon successful completion of the program.

For more information about doctoral scholarship and PhD programme at Xi’an Jiaotong-Liverpool University (XJTLU): Please visit:
http://www.xjtlu.edu.cn/en/admissions/phd.html
http://www.xjtlu.edu.cn/en/admissions/phd/feesscholarships.html

How to Apply: Interested applicants are advised to email the following documents to [email protected] (please put the project title and primary supervisor’s name in the subject line).
- CV
- Two reference letters
- Personal statement outlining your interest in the position
- Proof of English language proficiency (an IELTS score of above 6.5 or equivalent is required
- Verified school transcripts in both Chinese and English (for international students, only the English version is required)
- Verified certificates of education qualifications in both Chinese and English (for international students, only the English version is required)

Informal enquiries may be addressed to Dr. Sanghyuk Lee ([email protected]), whose personal profile is linked below:
http://academic.xjtlu.edu.cn/eee/Staff/sanghyuk-le

Funding Notes

The PhD studentship is available for three years subject to satisfactory progress by the student. The award covers tuition fees for three years (currently equivalent to RMB 80,000 per annum) and provides a monthly stipend of 3500 RMB as a contribution to living expenses. It also provides up to RMB 16,500 to allow participation at international conferences during the period of the award. It is a condition of the award that holders of XJTLU PhD scholarships carry out 300-500 hours of teaching assistance work per year.

The scholarship holder is expected to carry out the major part of his or her research at XJTLU in Suzhou, China. However, he or she is eligible for a research study visit to the University of Liverpool of up to three months, if this is required by the project.

Share this page:

Cookie Policy    X