Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Studies on food borne pathogens of man- how does Listeria monocytogenes grow inside host cells


   Faculty of Biology, Medicine and Health

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof I Roberts  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Listeria monocytogenes is a facultative intracellular Gram positive bacterium and the aetiological agent of Listeriosis a serious food borne disease. In contrast to other food borne infections, Listeriosis has high mortality rates (20-30%) despite antibiotic intervention. Infection can be perinatal where disease may manifest as listeric abortion, stillbirth or late-onset neonatal meningitis. In contrast, listeric infection in non-pregnant individuals usually affects the central nervous system manifesting as either meningitis or meningoencephalitis and atypically as endocarditis and pneumonia. In the case of immunocompromised patients, L. monocytogenes is the most commonly encountered form of bacterial meningitis with mortality rates as high as 60%. The incidence of listeriosis is increasing in the elderly population and with an expanding aged population the control of listeriosis remains an emerging priority. The principal mode of transmission of L. monocytogenes to humans is the ingestion of contaminated food with unpasteurized diary products, uncooked vegetables and chilled processed meat products being the main sources of infection. There have been a number of well-documented cases of food borne Listeriosis and globally, Listeriosis accounts for 30% of all fatalities as a consequence of food borne infection. As such L. monocytogenes represents a serious food-borne pathogen, which based on changing demographics and life style will pose an increasing risk. The project aims to use molecular microbial genetics, cell biology and metabolomics to study the intracellular physiology of L. monocytogenes. Specifically how does the physiology of the intracellular L. monocytogenes growing inside the cell affect the physiology of the infected cell, such that both cells remain alive while the intracellular L. monocytogenes replicates prior to eventually killing the infected cell.

Funding Notes

This project has a Band 2 fee. Details of our different fee bands can be found on our website. For information on how to apply for this project, please visit the Faculty of Biology, Medicine and Health Doctoral Academy website. Informal enquiries may be made directly to the primary supervisor.

References

Corbett, D., Schuler, S., Glenn, S., Andrew, P. W., Cavet, J. S., Roberts, I. S. (2011) The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol. Microbiol. 81:457-472.

Corbett, D., Wang, J., Schuler, S., Lopez-Castejon, G., Glenn, S., Brough, D., Andrew, P.W., Cavet, J.S., Roberts, I.S. (2012) Two Zinc Uptake Systems Contribute to the Full Virulence of Listeria monocytogenes During Growth in vitro and in vivo. Infect Immun. 80:14-21.

Lopez-Castejon G, Corbett D, Goldrick M, Roberts IS, Brough D, (2012) Inhibition of Calpain blocks the phagosomal escape of Listeria monocytogenes PLoS ONE 7:e35936