• University of Manchester Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Birmingham Featured PhD Programmes
  • Cardiff University Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Manchester Featured PhD Programmes
  • University of East Anglia Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes

PhD Study and Funding Fair

Oxford | Cambridge | Sheffield

Wellcome Trust Featured PhD Programmes
University of Bristol Featured PhD Programmes
Imperial College London Featured PhD Programmes
Quadram Institute Bioscience Featured PhD Programmes
University of Bristol Featured PhD Programmes

DNA damage response and neurodegenerative diseases

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Awaiting Funding Decision/Possible External Funding
    Awaiting Funding Decision/Possible External Funding

About This PhD Project

Project Description

Human cells repair thousands of DNA lesions daily. The majority of lesions arise from the intrinsic chemical instability of DNA and include single-strand breaks and base modifications. In non-proliferating cells (for example, post-mitotic neurons) damaged DNA bases and single-strand breaks can block transcription, leading to mutations, cell death and disease. In particular, defects in DNA repair are often linked to progressive neurological disorders (X-linked mental retardation, Ataxia Telangiectasia, Seckel syndrome etc.), although their precise roles in the neurological phenotypes remain elusive.

The successful applicant will investigate the mechanistic links between deficiencies in DNA repair and neurodegeneration using cutting-edge techniques. These include differentiation of human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) into a neural lineage, CRISPR/Cas9 gene knockout and editing, engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP), confocal microscopy, mass spectrometry etc.

References

1. Khoronenkova SV & Dianov GL (2015) ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc. Natl. Acad. Sci. 112, 3997-4002.
2. Khoronenkova SV & Dianov GL (2013) USP7S-dependent inactivation of Mule regulates DNA damage signaling and repair. Nucl. Acids Res. 41, 1750-1756.
3. Khoronenkova SV, Dianova II, Edelmann MJ, Kessler BM, Parsons JL, & Dianov GL (2012) ATM-dependent down-regulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol. Cell 45, 801-813.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully



Meet University of Cambridge at

FindAPhD LIVE! OXFORD
FindAPhD LIVE! CAMBRIDGE
FindAPhD LIVE! SHEFFIELD

Cookie Policy    X