• University of Cambridge Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • Carlos III Health Institute Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Leeds Featured PhD Programmes
  • University of Mannheim Featured PhD Programmes
  • London School of Economics and Political Science Featured PhD Programmes
Ludwig-Maximilians-Universität Munich Featured PhD Programmes
University College London Featured PhD Programmes
King’s College London Featured PhD Programmes
University of Westminster Featured PhD Programmes
National University of Singapore Featured PhD Programmes

Laser Driven Magnetism in Organic Semiconductors

  • Full or part time
  • Application Deadline
    Friday, January 20, 2017
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Carbon based pi-conjugated molecules have delocalized electrons which are responsible for their applications as semiconductors. This delocalized electron cloud can be driven externally, for example by using electric or magnetic fields. In ring- and spherical-shaped molecules, such as coronene and fullerenes, the electrons can be driven into a ring current by illuminating with circularly polarized laser light. We will study the new type of magnetism that can be generated and controlled by laser light.

In a recent preliminary study aiming to grow crystals of the pi-conjugated molecule coronene we have observed an unexpected and new phenomenon. Coronene grown in a magnetic field exhibits a previously unknown crystalline structure when compared to the known structures prepared in the absence of field (arXiv:1509.04120). Coronene and other aromatic molecules such fullerenes are known to develop ring currents if in magnetic fields.

Ring currents are a unique phenomenon which attracted the interests of many chemists and physicists trying to understand the structure of organic aromatic compounds. One of the most spectacular manifestations of ring currents are the shielding of nuclear proton spins in NMR spectroscopy. Recently, a theoretical proposal about inducing ring currents with circularly polarized laser pulses triggered a large interest (JACS 128, 7043). This is because short laser pulses can generate ring currents orders of magnitude higher than those achieved with the most common laboratory magnetic fields.

In this PhD thesis we will induce ring currents with femtosecond laser pulses in order to induce transient magnetism in molecular solids made of coronene and fullerenes. This will open up possibilities for new ways of assembling molecules in crystals and observe new undiscovered properties. In addition, this exciting project aims to demonstrate the control of transient magnetism by using laser light.

Relevant collaborations are with Dr. Simon Crampin in Bath, Dr. Simon Hall (Bristol), Prof. von Hauff (Amsterdam) and Prof. Aldo Brillante (Bologna).

There will be the possibility for the student to attend some of the lectures from the Condensed Matter Physics CDT funded by EPSRC and interact with students enrolled in that programme.

Applicants should have a background in the physical sciences and have or expect to gain a First or Upper Second Class UK Honours degree, or the equivalent from an overseas University.

Contact Dr Enrico Da Como () for further information on the project. http://people.bath.ac.uk/edc25/

Anticipated start date: 2 October 2017.

Funding Notes

Some Research Council funding is available on a competition basis to Home and EU students who have been resident in the UK for 3 years prior to the start of the project. For more information on eligibility, see: View Website.

Funding will cover Home/EU tuition fees, a stipend (currently £14,296 per annum for 2016/17) and a training support fee of £1,000 per annum for 3.5 years. Early application is strongly recommended.

Applicants classed as Overseas for tuition fee purposes are NOT eligible for funding; however, we welcome all-year-round applications from self-funded candidates and candidates who can source their own funding.

How good is research at University of Bath in Physics?

FTE Category A staff submitted: 23.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.
Email Sent

Share this page:

Cookie Policy    X