Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Development of spray-coated perovskite solar cells


   Department of Physics and Astronomy

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr D G Lidzey  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

The last few years has seen tremendous progress in the development of photovoltaics devices based on perovskite materials. Such materials can be processed from solution into thin-films, offering the prospect of manufacturing efficient photovoltaic-devices over large areas using comparatively cheap materials and processes, in which the amount of embodied energy (and carbon) is substantially reduced. This PhD project will develop a range of new perovskite precursor ’ink’ formulations, and will then explore their deposition over large areas using and ultra-sonic spray-coating. This technique offers the prospect of device fabrication at low cost over very large areas and are of significant interest in real-world manufacture processes.

A central task will be to develop a toolbox of materials and spray-coating process techniques that can be applied to curved surfaces. The key science challenge to be addressed is to open a sufficiently wide process-window permitting a surface having some degree of surface-roughness to be used as the substrate for a perovskite solar cell. We will develop many of the necessary spray-casting methodologies and materials by initially working on flat metal-oxide coated glass. This will build upon our recent success where we have fabricated fully spray-cast standard architecture and inverted architecture perovskite devices having a PCE of 10%.

The student will be tasked with the development of new spray-coating recipes to deposit caesium-containing perovskite materials, with the objective of reaching a PCE in excess of 15%. Once basic techniques have been established, the student will move onto spray-casting over curved substrates that will be formed from carbon-fibre composites. Here, the curved substrates will be fabricated by collaborators in the Department of Mechanical Engineering at the University of Sheffield. The research will also involve the use of a number of techniques to explore device operation, efficiency, homogeneity and yield. This is an experimental research project suitable for Physicists, Material Scientists, Electronic Engineers or Physical Chemists having good, hands-on practical skills who is interested in the development of new technologies.

Where will I study?

 About the Project