Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Reliable And Compact High Performance Power Electronics In Electric And Hybrid Vehicles Through Power Semiconductor Engineering


   Faculty of Engineering, Environment & Computing

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Mr N Lophitis  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Award Details: Masters by Research

Duration: 1 year full time or 2 years part time (Starting May 2017 or September 2017)

Application deadline: This opportunity will only remain open until a suitable candidate is identified- early application is therefore advised. Standard University research application closing dates apply. (http://www.coventry.ac.uk/research/research-students/making-an-application/)

Informal enquiries are essential before application; contact Dr. Neophytos Lophitis to discuss this opportunity.

Congratulations on taking your first steps toward a Research Degree with Coventry’s Faculty of Engineering, Environment and Computing. As an ambitious and innovative University, we’re investing an initial £100m into our new research strategy, ‘Excellence with Impact’ (http://www.coventry.ac.uk/research/about-research-at-coventry/). Through original approaches from world-leading experts, we’re aiming for our research to make a tangible difference to the way we live. As a research student you are an integral part of Coventry’s lively and diverse research community and contribute to our reputation for excellence. With our exceptional facilities and superb support mechanisms (http://www.coventry.ac.uk/research/research-students/research-studentships/research-studentships-the-benefits/?id=98267) you are afforded every opportunity for academic success.

THE PROJECT
Systems and applications that incorporate power electronics and therefore power semiconductor devices have high efficiency and advanced functionality. Wide bandgap semiconductor materials such as the Silicon Carbide (SiC) and the Gallium Nitride (GaN) have superior electrical characteristics compared to silicon. As a result, high voltage power devices can get a real step-improvement in performance, efficiency and the ability to operate at elevated temperatures.

In hybrid and electric vehicles, the electric powertrain requires less cooling and it becomes more efficient if wide band gap semiconductor devices are used in the power electronics system. Further, the fuel economy of the vehicle increases and more cabin area becomes available.

Similar benefits arise when wide bandgap power devices are used in other applications, for example in power transmission systems, in conditioning power from wind and solar farms, consumer electronics and so on.

This project aims to provide with the development of a wide band gap high voltage device that fully exploits the material characteristics of wide band gap semiconductors such as the SiC through power semiconductor engineering.

Depending on the student’s academic background, we foresee a suite of studies that may include:

- Technology Computer Aided Design (TCAD) modelling of semiconductor materials and devices. This includes modelling material parameters such as the bang gap, effective mass. density of states, activation energy for implants, electron mobility.
- Physical modelling of traps due to defects including the development of traps model.
- Process simulations.
- Layout design.
- Circuit design, experimentation, measurements and characterisation to demonstrate of the overall performance of the proposed solution.

ABOUT THE CENTRE/DEPARTMENT
Our research in Mobility & Transport (http://www.coventry.ac.uk/research/areas-of-research/mobility-transport/) works across our faculties and focuses on the design and engineering of future transport systems, including the growing influence of the internet and connectivity. The focus is on inclusive, sustainable and safe transport integrating the strongest research elements in design and engineering. Future transport systems have a number of high level aims including ambitions to totally eliminate road fatalities, to eliminate congestion, to provide users with seamless integrated and connected transport systems, to eliminate emissions and to develop vehicles and systems that use lightweight, efficient and recycled materials.

SUCCESSFUL APPLICANTS
Successful applicants will have:

- A minimum of a 2:1 first degree in a relevant discipline/subject area with a minimum 60% mark in the Project element or equivalent with a minimum 60% overall module average, or
- The potential to engage in innovative research and to complete the PhD within a prescribed period of study
- Language proficiency (IELTS overall minimum score of 7.0 with a minimum of 6.5 in each component).

ELIGIBILITY & APPLICATION PROCEDURE
Application Procedure:

Application information can be found in our how to apply section (http://www.coventry.ac.uk/research/research-students/how-to-apply/?id=88848). Before completing the application please contact Dr. Neophytos Lophitis (cc'ing [Email Address Removed] when you do) for an initial informal discussion about the opportunity.

Eligibility:

All UK/EU students are eligible to apply that meet the academic requirements, the eligibility criteria can be found here.

 About the Project