• University of Southampton Featured PhD Programmes
  • Staffordshire University Featured PhD Programmes
  • Queen’s University Belfast Featured PhD Programmes
  • University of East Anglia Featured PhD Programmes
  • Northumbria University Featured PhD Programmes
  • University of Glasgow Featured PhD Programmes
  • University of Manchester Featured PhD Programmes
  • University of Warwick Featured PhD Programmes
Brunel University London Featured PhD Programmes
Helmholtz Zentrum München Featured PhD Programmes
University of Southampton Featured PhD Programmes
University of Glasgow Featured PhD Programmes
Heriot-Watt University Featured PhD Programmes

Design and Development of Artificial Nerve Grafts: Developing novel tissue-engineered electrospun artificial nerve grafts based on functional chemical, structural and cellular requirements

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr K Andrews
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

There is a lack of viable treatment options for nerve damage and disease in humans. Developing a greater understanding of how tissue engineering can impact upon neural regeneration mechanisms could provide clinical solutions and treatment options for a range of debilitating conditions. This project seeks to investigate the use of fibrous materials structures, produced through electrospinning, to provide artificial grafts for use in neural applications.

There are 10 million people in the UK living with a neurological condition, with over £3.3 billion spent by the NHS each year on patients (excluding chronic pain services); in excess of an additional £2 billion is spent by local authorities on social care for adults living with neuro-physical disabilities. It is widely acknowledged that a greater range of effective treatments is needed for patients with these conditions and that, in association, an increased knowledge of regeneration mechanisms of the human nervous system is required.

Electrospinning is a materials production technique used to fabricate fibrous scaffolds that biomimic the natural matrix that underlies tissues in the body. These scaffolds can be used to provide a substrate for cell growth to either increase knowledge of disease models or to provide an environment that directly induces required cell behaviour through the incorporation of structural, mechanical or chemical cues. Previous work using electrospinning has shown significant potential for its use in tissue engineered organs and therapeutic solutions, including in neural applications.

An improvement in available treatment options would significantly improve patient quality of life, also leading to reduced healthcare and socio-economic costs.

Project Aim: to develop novel tissue-engineered electrospun artificial nerve grafts based on functional chemical, structural and cellular requirements.

Project Objectives:
• Investigate and determine anatomical and clinical requirements for the functioning of a healthy, natural nerve and a tissue engineered replacement
• Design artificial nerve graft scaffolds and fabricate these structures through use of electrospinning
• Evaluate the effect of the produced structures with regards to cellular behavior and functioning
• Develop and improve biomimetic behaviour through the optimisation of chemical, structural and cellular cues

Funding Notes

Essential Skills:
- A good (2i or First Class) undergraduate degree in Engineering, Biomedical Sciences/Bioengineering, Physics, Chemistry, Materials Science or similar (BEng, MEng, BSc) (or equivalent industrial experience)
- Good written and verbal English language skills (IELTS 6.5 or equivalent if English is not first language)
- Ability to work in a team and conduct tasks independently
- Experience of data collection and data analysis
- An appreciation for the field of biomedical engineering
- A willingness to learn a variety of new, multidisciplinary skills, including cell culture (using human cells), microscopy and materials production


Cookie Policy    X