FindAPhD LIVE! Study Fair

Edinburgh | Oxford | Leeds

FindA University Ltd Featured PhD Programmes
National University of Ireland, Galway Featured PhD Programmes
University of Surrey Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes

Optical Imaging of Biological Specimens - developing advanced models for acoustic imaging


About This PhD Project

Project Description

Optical imaging can provide detailed information about a range of biological specimens from whole animals to small tissue samples. A drawback however is that such imaging often only provides data from structures at or near the surface. By contrast Optical Coherence Tomography (OCT), a low coherence interference imaging technique, can provide detailed information on tissue structure at depths of a few mm with resolution of around 10 um in living animals.

In this project we will apply OCT to a range of biological specimens to provide information which has proved to be unobtainable using other techniques. In particular the project will use OCT to provide information on tissue regeneration in amphioxus (fish-like marine chordates with close affinity to vertebrates) which are used as a model for testing concepts in nerve cord growth and repair. We will also apply OCT to Antarctic Krill (Euphasia superba), perhaps the key species in the Antarctic food web. The information these studies provide will be used to develop advanced models for acoustic imaging Krill and may also support studies on the effects of global climate change on this key species. We may also apply the system to recently launched studies of surface vasculature in Southern Elephant Seals to support ongoing studies into the diving physiology of this species.

The projects described are interdisciplinary and will require an open mind and a willingness to work with partners within Biology and Marine Science in the UK and at the Australian Antarctic Division. Australia. In order to fully develop our systems and to enable in vivo testing some travel and extended stays may be required to partner institutions.

The main supervisor for the project will be Professor Tom Brown in the School of Physics, with co-supervision by Dr Ildiko Somorjai within the School of Biology.

Prospective students should have a good background in Physics with an interest in applying their work in other fields. We are also interested in applications from students in Biology who have a strong background in imaging techniques.

Examples of the application of OCT to Krill can be found at:

M.J. Cox, S. Kawaguchi, R. King, K.Dholakia and C.T.A. Brown, “Internal physiology of live krill revealed using new aquaria techniques and mixed optical microscopy and optical coherence tomography (OCT) imaging techniques”, Marine and Freshwater Behaviour and Physiology, 48, p. 455 (2015)

N. Bellini, M.J. Cox, D.J. Harper, S.R. Stott, P.C. Ashok, K. Dholakia, S. Kawaguchi, R. King, T. Horton and C.T.A. Brown, “The Application of Optical Coherence Tomography to Image Subsurface Tissue Structure of Antarctic Krill Euphausia superba”, PLOS ONE, 9, Art. No. e110367 (2014

References

M.J. Cox, S. Kawaguchi, R. King, K.Dholakia and C.T.A. Brown, “Internal physiology of live krill revealed using new aquaria techniques and mixed optical microscopy and optical coherence tomography (OCT) imaging techniques”, Marine and Freshwater Behaviour and Physiology, 48, p. 455 (2015)

N. Bellini, M.J. Cox, D.J. Harper, S.R. Stott, P.C. Ashok, K. Dholakia, S. Kawaguchi, R. King, T. Horton and C.T.A. Brown, “The Application of Optical Coherence Tomography to Image Subsurface Tissue Structure of Antarctic Krill Euphausia superba”, PLOS ONE, 9, Art. No. e110367 (2014

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully




Let us know you agree to cookies

We use cookies to give you the best online experience. By continuing, we'll assume that you're happy to receive all cookies on this website. To read our privacy policy click here

Ok