Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  (BBSRC DTP) Morphological control of cell fate, behaviour and function


   Faculty of Biology, Medicine and Health

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr S Herbert, Prof N Papalopulu, Dr Martin Baron  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

Tissue formation critically depends on the appropriate assignment of specialised cell fates and behaviours. The traditional perspective of these competitive decisions is that cells first perceive extrinsic signalling cues, decide their fate and then act appropriately (i.e. “decide then act”). However, we propose a much more dynamic “act then decide” view of collective decision-making that exploits the phenomenon of sensorimotor-feedback to temporally modulate the selection process. For example, in response to signalling cues, cells often change shape and extend membrane processes (such as filopodia) that perceive the extracellular environment, placing signal receptors ever closer to signal ligand and creating positive-feedback. Such sensorimotor-feedback operates within minutes without necessitating much slower gene expression changes, hence may dramatically temporally modulate cell decision-making, and is already a well-recognised concept in robotics and child development. However, roles for cell shape in the control of cell signalling, fate and function remain unexplored.

To define dynamic interrelationships between cell morphology and behaviour, this project will:

(a) Probe the impact of cell shape changes on cell signalling dynamics in-vivo. To explore roles for sensorimotor-feedback in the coordination of tissue formation, we will first test if changes in cell morphology correlate with switches in cell signalling dynamics. Using the vertebrate vasculature as a model morphogenetic system (due to its high tractability and close links to cardiovascular disease and cancer), critical cell fate-determining signal networks will be monitored using dynamic fluorescent reporters and advanced in-vivo live imaging approaches in zebrafish embryos. When combined with quantitative morphometric analyses of vascular cell morphology, we will uniquely explore and define interrelationships between dynamic changes in key cell morphological metrics (e.g. cell size, shape, surface area, filopodia extension, cell-cell contacts) and resulting switches in signalling network behaviour (e.g. positive-feedback, signal amplification, noise reduction and oscillations).

(b) Determine if in-vivo manipulation of cell morphology can direct cell fate decisions. In parallel, we will functionally test the role of cell shape dynamics in controlling cell fate and behaviour. Using pharmacological and/or novel optogenetic approaches to manipulate cell shape (e.g. modulation of filopodial dynamics), we will explore the mechanistic impact of switches in cell morphology on vascular signalling network dynamics, cell fate and vascular morphogenesis in-vivo. Hence, we will directly test if changes in cell shape play critical roles in temporally modulating cell signalling and decision-making by sensorimotor-feedback; a novel concept that could potentially be exploited therapeutically to tackle pathological vessel growth in cardiovascular disease and cancer.

Entry Requirements:
Applications are invited from UK/EU nationals only. Applicants must have obtained, or be about to obtain, at least an upper second class honours degree (or equivalent) in a relevant subject.


Funding Notes

This project is to be funded under the BBSRC Doctoral Training Programme. If you are interested in this project, please make direct contact with the Principal Supervisor to arrange to discuss the project further as soon as possible. You MUST also submit an online application form - full details on how to apply can be found on the BBSRC DTP website www.manchester.ac.uk/bbsrcdtpstudentships

As an equal opportunities institution we welcome applicants from all sections of the community regardless of gender, ethnicity, disability, sexual orientation and transgender status. All appointments are made on merit.