Find A PhD

Find A Masters

1000's of Masters Courses from across the globe

Find An MBA

MBA & Business Masters courses from the World's leading Business Schools

Spotlight

University of Manchester Featured PhD Projects & Programmes

Spotlight

Cranfield University Featured PhD Projects & Programmes
University of Huddersfield Featured PhD Projects & Programmes
University of Southampton Featured PhD Projects & Programmes

PhD Research Project

BBSRC iCASE: Predicting Plant Growth, from Genes to Organism.


Cell and Molecular Biology
Prof A J Millar
Prof V Danos
Applications accepted all year round
Competition Funded PhD Project (European/UK Students Only)

The supervisory team: Prof. Andrew Millar FRS, School of Biological Sciences (main supervisor); Prof. Vincent Danos, School of Informatics, Director of SynthSys; Dr. Robert Muetzelfeldt, Simulistics Ltd.

This fully-funded PhD provides dual-expertise training in the interdisciplinary environment of SynthSys, with experience at Simulistics Ltd.

Understanding the growth of a plant in a changing environment is demanding, because plant development and metabolism respond sensitively to the local conditions. We have linked Crop Science and Systems Biology approaches to understand whole-plant growth, in the first ‘Framework Model’ of the laboratory model plant Arabidopsis thaliana. The model predicts whole-plant biomass, from detailed molecular mechanisms, and was recently validated in independent experiments.

This project will develop the next-generation model, both as a tool for fundamental biology, and to enable synthetic biology designs that take account of the complex regulation in the plant host. You will be trained to use a range of cutting-edge models, building on the concrete example of our Framework Model. The model will be extended to represent larger, molecular networks that control biomass under a wider range of environmental conditions, with international collaborators and Simulistics’ Simile software. You will validate the model in new experiments, using Arabidopsis mutants and environmental control will test the model’s predictive power, and to disseminate the models in the international research community.

Student profile: background in Biology, Geoscience, Agricultural Engineering or a suitably numerate discipline (e.g. computer science, engineering, applied maths or physics). Computer skills essential; programming experience desirable but not essential.


Funding Notes:

Fully funded for UK and UK-resident EU students through a BBSRC industrial CASE studentship.

Interested individuals must follow the instructions at this link on how to apply
http://www.ed.ac.uk/schools-departments/biology/postgraduate/pgr/how-to-apply

Please contact andrew.millar@ed.ac.uk for informal enquiries.


References:

www.synthsys.ed.ac.uk; www.simulistics.com; www.plasmo.ed.ac.uk; www.amillar.org.

Salazar J.D., Saithong T., Brown P.E., Foreman J., Locke J.C.W., Halliday K.J., Carré I.A., Rand D.A., Millar A.J. (2009) Prediction of Photoperiodic Regulators from Quantitative Gene Circuit Models. Cell, 139: 1170-1179.



Spotlight

FindA University Ltd Featured PhD Projects & Programmes

Find A PhD

Copyright ©2005-2014
All rights reserved

FindAPhD is a database of PhD Projects & Programmes

FindA University Ltd, Sellers Wheel, 151 Arundel Street, Sheffield, S1 2NU, UK. Tel: +44 (0)114 213 4333 Fax: +44 (0) 114 268 5766
Cookie Policy    X